Menu Close

solve-for-x-16-x-20-x-25-x-




Question Number 175443 by Linton last updated on 30/Aug/22
solve for x  16^x +20^x = 25^x
$${solve}\:{for}\:{x} \\ $$$$\mathrm{16}^{{x}} +\mathrm{20}^{{x}} =\:\mathrm{25}^{{x}} \\ $$
Answered by Ar Brandon last updated on 30/Aug/22
16^x +20^x =25^x ⇒(((16)/(25)))^x +(((20)/(25)))^x =1  ((4/5))^(2x) +((4/5))^x =1⇒t^2 +t−1=0, t=((4/5))^x   t=((−1±(√5))/2)⇒((4/5))^x =(((√5)−1)/2)  ⇒x=((ln((√5)−1)−ln2)/(ln4−ln5))
$$\mathrm{16}^{{x}} +\mathrm{20}^{{x}} =\mathrm{25}^{{x}} \Rightarrow\left(\frac{\mathrm{16}}{\mathrm{25}}\right)^{{x}} +\left(\frac{\mathrm{20}}{\mathrm{25}}\right)^{{x}} =\mathrm{1} \\ $$$$\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{2}{x}} +\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{{x}} =\mathrm{1}\Rightarrow{t}^{\mathrm{2}} +{t}−\mathrm{1}=\mathrm{0},\:{t}=\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{{x}} \\ $$$${t}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\Rightarrow\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{{x}} =\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{ln}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)−\mathrm{ln2}}{\mathrm{ln4}−\mathrm{ln5}} \\ $$
Commented by peter frank last updated on 31/Aug/22
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *