Question Number 54473 by Tawa1 last updated on 04/Feb/19
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\mathrm{2}^{\mathrm{2x}\:−\:\mathrm{4}} \:\:=\:\:\mathrm{x}^{\mathrm{2}} \\ $$
Answered by mr W last updated on 04/Feb/19
$$\left(\mathrm{2}^{{x}−\mathrm{2}} \right)^{\mathrm{2}} ={x}^{\mathrm{2}} \\ $$$$\mathrm{2}^{{x}−\mathrm{2}} =\pm{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{2}^{{x}} =\pm{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{e}^{{x}\:\mathrm{ln}\:\mathrm{2}} =\pm{x} \\ $$$$\pm\frac{\mathrm{1}}{\mathrm{4}}={xe}^{−{x}\:\mathrm{ln}\:\mathrm{2}} \\ $$$$\pm\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}=\left(−{x}\:\mathrm{ln}\:\mathrm{2}\right){e}^{−{x}\:\mathrm{ln}\:\mathrm{2}} \\ $$$$−{x}\:\mathrm{ln}\:\mathrm{2}=\mathbb{W}\left(\pm\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}=−\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}\mathbb{W}\left(\pm\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}\right)=\begin{cases}{−\mathrm{0}.\mathrm{2153}}\\{\mathrm{0}.\mathrm{3099}}\\{\mathrm{4}}\end{cases} \\ $$
Commented by Tawa1 last updated on 04/Feb/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$$$ \\ $$