Menu Close

solve-for-x-2log-x-4-log-2-x-




Question Number 171828 by Mikenice last updated on 21/Jun/22
solve for x:  2log_x 4=log_2 x
$${solve}\:{for}\:{x}: \\ $$$$\mathrm{2}{log}_{{x}} \mathrm{4}={log}_{\mathrm{2}} {x} \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 21/Jun/22
log_x 16=log_2 x⇒((log_2 16)/(log_2 x))=log_2 x⇒  4=(log_2 x)^2 ⇒{_(log_2 x=−2⇒x=(1/4)) ^(log_2 x=2⇒x=4)
$${log}_{{x}} \mathrm{16}={log}_{\mathrm{2}} {x}\Rightarrow\frac{{log}_{\mathrm{2}} \mathrm{16}}{{log}_{\mathrm{2}} {x}}={log}_{\mathrm{2}} {x}\Rightarrow \\ $$$$\mathrm{4}=\left({log}_{\mathrm{2}} {x}\right)^{\mathrm{2}} \Rightarrow\left\{_{{log}_{\mathrm{2}} {x}=−\mathrm{2}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{4}}} ^{{log}_{\mathrm{2}} {x}=\mathrm{2}\Rightarrow{x}=\mathrm{4}} \right. \\ $$$$ \\ $$
Commented by Mikenice last updated on 21/Jun/22
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *