Menu Close

Solve-for-x-3-2x-18x-




Question Number 14853 by tawa tawa last updated on 04/Jun/17
Solve for x  3^(2x)  = 18x
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$\mathrm{3}^{\mathrm{2x}} \:=\:\mathrm{18x} \\ $$
Answered by mrW1 last updated on 04/Jun/17
e^(2xln 3) =18x  18xe^(−2xln 3) =1  (−2xln 3)e^((−2xln 3)) =−((ln 3)/9)  ⇒−2xln 3=W(−((ln 3)/9))  ⇒x=−((W(−((ln 3)/9)))/(2ln 3))≈−((W(−0.122068))/(2.197225))  = { ((−((−3.295837)/(2.197225))=1.5)),((−((−0.140479)/(2.197225))=0.063935)) :}
$${e}^{\mathrm{2}{x}\mathrm{ln}\:\mathrm{3}} =\mathrm{18}{x} \\ $$$$\mathrm{18}{xe}^{−\mathrm{2}{x}\mathrm{ln}\:\mathrm{3}} =\mathrm{1} \\ $$$$\left(−\mathrm{2}{x}\mathrm{ln}\:\mathrm{3}\right){e}^{\left(−\mathrm{2}{x}\mathrm{ln}\:\mathrm{3}\right)} =−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{9}} \\ $$$$\Rightarrow−\mathrm{2}{x}\mathrm{ln}\:\mathrm{3}=\boldsymbol{{W}}\left(−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{9}}\right) \\ $$$$\Rightarrow{x}=−\frac{\boldsymbol{{W}}\left(−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{9}}\right)}{\mathrm{2ln}\:\mathrm{3}}\approx−\frac{{W}\left(−\mathrm{0}.\mathrm{122068}\right)}{\mathrm{2}.\mathrm{197225}} \\ $$$$=\begin{cases}{−\frac{−\mathrm{3}.\mathrm{295837}}{\mathrm{2}.\mathrm{197225}}=\mathrm{1}.\mathrm{5}}\\{−\frac{−\mathrm{0}.\mathrm{140479}}{\mathrm{2}.\mathrm{197225}}=\mathrm{0}.\mathrm{063935}}\end{cases} \\ $$
Commented by adelson last updated on 05/Jun/17
what′s W ?
$${what}'{s}\:\boldsymbol{{W}}\:? \\ $$
Commented by tawa tawa last updated on 05/Jun/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$
Commented by mrW1 last updated on 05/Jun/17
W stands for Lambert W−function  which is the inverse function of  f(x)=xe^x
$${W}\:{stands}\:{for}\:{Lambert}\:{W}−{function} \\ $$$${which}\:{is}\:{the}\:{inverse}\:{function}\:{of} \\ $$$${f}\left({x}\right)={xe}^{{x}} \\ $$
Commented by tawa tawa last updated on 05/Jun/17
Have been wondering, please sir explain further.
$$\mathrm{Have}\:\mathrm{been}\:\mathrm{wondering},\:\mathrm{please}\:\mathrm{sir}\:\mathrm{explain}\:\mathrm{further}. \\ $$
Commented by mrW1 last updated on 05/Jun/17
I don′t know what I can tell more.  One should know that for real values  W(x) function is defined for x≥−(1/e)  and for −(1/e)<x<0 there are two values  for W(x).
$${I}\:{don}'{t}\:{know}\:{what}\:{I}\:{can}\:{tell}\:{more}. \\ $$$${One}\:{should}\:{know}\:{that}\:{for}\:{real}\:{values} \\ $$$${W}\left({x}\right)\:{function}\:{is}\:{defined}\:{for}\:{x}\geqslant−\frac{\mathrm{1}}{{e}} \\ $$$${and}\:{for}\:−\frac{\mathrm{1}}{{e}}<{x}<\mathrm{0}\:{there}\:{are}\:{two}\:{values} \\ $$$${for}\:{W}\left({x}\right). \\ $$
Commented by tawa tawa last updated on 05/Jun/17
Alright sir. God bless you
$$\mathrm{Alright}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Commented by tawa tawa last updated on 05/Jun/17
What i mean is that how do you get  − 3.295837
$$\mathrm{What}\:\mathrm{i}\:\mathrm{mean}\:\mathrm{is}\:\mathrm{that}\:\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{get}\:\:−\:\mathrm{3}.\mathrm{295837} \\ $$
Commented by mrW1 last updated on 06/Jun/17
if you can not find a W−function  calculator which gives 2 values for  x<0, you can also calculate by youself,  for example using geogebra. you  find just the zero points from function  f(x)=xe^x +((ln 3)/9)
$${if}\:{you}\:{can}\:{not}\:{find}\:{a}\:{W}−{function} \\ $$$${calculator}\:{which}\:{gives}\:\mathrm{2}\:{values}\:{for} \\ $$$${x}<\mathrm{0},\:{you}\:{can}\:{also}\:{calculate}\:{by}\:{youself}, \\ $$$${for}\:{example}\:{using}\:{geogebra}.\:{you} \\ $$$${find}\:{just}\:{the}\:{zero}\:{points}\:{from}\:{function} \\ $$$${f}\left({x}\right)={xe}^{{x}} +\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{9}} \\ $$
Commented by mrW1 last updated on 06/Jun/17
Commented by tawa tawa last updated on 06/Jun/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *