Menu Close

Solve-for-x-3-x-2x-2-Mastermind-




Question Number 170946 by Mastermind last updated on 04/Jun/22
Solve for x :  3^x =2x+2    Mastermind
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mathrm{3}^{\mathrm{x}} =\mathrm{2x}+\mathrm{2} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Answered by mr W last updated on 04/Jun/22
3^x =2(x+1)  3^(x+1) =6(x+1)  e^((x+1)ln 3) =6(x+1)  −(x+1)ln 3 e^(−(x+1)ln 3) =−((ln 3)/6)  −(x+1)ln 3=W(−((ln 3)/6))  ⇒x=−1−(1/(ln 3))W(−((ln 3)/6))= { ((1.444561)),((−0.790109)) :}
$$\mathrm{3}^{{x}} =\mathrm{2}\left({x}+\mathrm{1}\right) \\ $$$$\mathrm{3}^{{x}+\mathrm{1}} =\mathrm{6}\left({x}+\mathrm{1}\right) \\ $$$${e}^{\left({x}+\mathrm{1}\right)\mathrm{ln}\:\mathrm{3}} =\mathrm{6}\left({x}+\mathrm{1}\right) \\ $$$$−\left({x}+\mathrm{1}\right)\mathrm{ln}\:\mathrm{3}\:{e}^{−\left({x}+\mathrm{1}\right)\mathrm{ln}\:\mathrm{3}} =−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{6}} \\ $$$$−\left({x}+\mathrm{1}\right)\mathrm{ln}\:\mathrm{3}={W}\left(−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{6}}\right) \\ $$$$\Rightarrow{x}=−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{3}}{W}\left(−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{6}}\right)=\begin{cases}{\mathrm{1}.\mathrm{444561}}\\{−\mathrm{0}.\mathrm{790109}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *