Question Number 40083 by tawa tawa last updated on 15/Jul/18
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\mathrm{5}^{\mathrm{x}} \:+\:\mathrm{5x}\:=\:\mathrm{140} \\ $$
Commented by MrW3 last updated on 16/Jul/18
$$\mathrm{5}^{{x}} =\left(\mathrm{28}−{x}\right)×\mathrm{5} \\ $$$$\mathrm{5}^{{x}−\mathrm{28}} =\left(\mathrm{28}−{x}\right)×\mathrm{5}^{−\mathrm{27}} \\ $$$${e}^{\left({x}−\mathrm{28}\right)\mathrm{ln}\:\mathrm{5}} =\left(\mathrm{28}−{x}\right)×\mathrm{5}^{−\mathrm{27}} \\ $$$$\mathrm{5}^{\mathrm{27}} ×\mathrm{ln}\:\mathrm{5}=\left(\mathrm{28}−{x}\right)\mathrm{ln}\:\mathrm{5}\:{e}^{\left(\mathrm{28}−{x}\right)\mathrm{ln}\:\mathrm{5}} \\ $$$$\Rightarrow\left(\mathrm{28}−{x}\right)\mathrm{ln}\:\mathrm{5}=\mathbb{W}\left(\mathrm{5}^{\mathrm{27}} \mathrm{ln}\:\mathrm{5}\right) \\ $$$$\Rightarrow{x}=\mathrm{28}−\frac{\mathbb{W}\left(\mathrm{5}^{\mathrm{27}} \mathrm{ln}\:\mathrm{5}\right)}{\mathrm{ln}\:\mathrm{5}}=\mathrm{28}−\frac{\mathrm{40}.\mathrm{2359}}{\mathrm{ln}\:\mathrm{5}}=\mathrm{3} \\ $$
Commented by tawa tawa last updated on 16/Jul/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by MJS last updated on 15/Jul/18
$$\mathrm{5}^{\mathrm{3}} +\mathrm{5}×\mathrm{3}=\mathrm{140} \\ $$