Question Number 58529 by Tawa1 last updated on 24/Apr/19

Commented by MJS last updated on 24/Apr/19

Commented by Tawa1 last updated on 24/Apr/19

Commented by behi83417@gmail.com last updated on 25/Apr/19
![x+y=4xy x^3 +y^3 =9xy⇒[x+y=p,xy=q]⇒p^3 −3pq=9q ⇒ { ((p=4q)),((p^3 −3pq=9q⇒(4q)^3 −3(4q)q=9q)) :} ⇒64q^3 −12q^2 −9q=0⇒q(64q^2 −12q−9)=0 ⇒1)q=0⇒(x=0∨y=0,not ok for original question) ⇒2) 64q^2 −12q−9=0⇒q=((6±(√(36+9×64)))/(64)) ⇒[q=xy=3×((1±(√(17)))/(32))⇒p=x+y=3×((1±(√(17)))/8)] z^2 −(3/8)(1±(√(17)))z+(3/(32))(1±(√(17)))=0 z_(1,2) =(3/(16))[(1+(√(17)))±(√((1+(√(17)))^2 −(1+(√(17)))))] =(3/(16))[(1+(√(17)))±(√(17+(√(17))))] z_(3,4) =(3/(16))[(1−(√(17)))±(√((1−(√(17)))^2 −(1−(√(17)))))] =(3/(16))[(1−(√(17)))±(√(17−(√(17))))] z_(5,6) =(3/(16))[(1+(√(17)))±(√((1+(√(17)))^2 −(1−(√(17)))))] =(3/(16))[(1+(√(17)))±(√(17+3(√(17))))] z_(7,8) =(3/(16))[(1−(√(17)))±(√((1−(√(17)))^2 −(1+(√(17)))))] =(3/(16))[(1−(√(17)))±(√(17−3(√(17))))]](https://www.tinkutara.com/question/Q58566.png)
Commented by Tawa1 last updated on 25/Apr/19

Answered by MJS last updated on 25/Apr/19

Commented by MJS last updated on 25/Apr/19

Commented by Tawa1 last updated on 24/Apr/19

Commented by tanmay last updated on 25/Apr/19

Commented by tanmay last updated on 25/Apr/19

Answered by tanmay last updated on 24/Apr/19

Commented by Tawa1 last updated on 24/Apr/19

Answered by Rasheed.Sindhi last updated on 24/Apr/19

Commented by Tawa1 last updated on 24/Apr/19
