Menu Close

Solve-for-x-and-y-1-x-1-y-4-i-x-2-y-y-2-x-9-ii-




Question Number 58529 by Tawa1 last updated on 24/Apr/19
Solve for x and y             (1/x) + (1/y) = 4       ....... (i)              (x^2 /y) + (y^2 /x)  =  9      ....... (ii)
Solveforxandy1x+1y=4.(i)x2y+y2x=9.(ii)
Commented by MJS last updated on 24/Apr/19
it leads to an exactly solveable polynome  of 4^(th)  degree. I will show later
itleadstoanexactlysolveablepolynomeof4thdegree.Iwillshowlater
Commented by Tawa1 last updated on 24/Apr/19
Waiting sir. God bless you
Waitingsir.Godblessyou
Commented by behi83417@gmail.com last updated on 25/Apr/19
x+y=4xy  x^3 +y^3 =9xy⇒[x+y=p,xy=q]⇒p^3 −3pq=9q  ⇒ { ((p=4q)),((p^3 −3pq=9q⇒(4q)^3 −3(4q)q=9q)) :}  ⇒64q^3 −12q^2 −9q=0⇒q(64q^2 −12q−9)=0  ⇒1)q=0⇒(x=0∨y=0,not ok for original  question)  ⇒2) 64q^2 −12q−9=0⇒q=((6±(√(36+9×64)))/(64))  ⇒[q=xy=3×((1±(√(17)))/(32))⇒p=x+y=3×((1±(√(17)))/8)]  z^2 −(3/8)(1±(√(17)))z+(3/(32))(1±(√(17)))=0  z_(1,2) =(3/(16))[(1+(√(17)))±(√((1+(√(17)))^2 −(1+(√(17)))))]  =(3/(16))[(1+(√(17)))±(√(17+(√(17))))]  z_(3,4) =(3/(16))[(1−(√(17)))±(√((1−(√(17)))^2 −(1−(√(17)))))]  =(3/(16))[(1−(√(17)))±(√(17−(√(17))))]  z_(5,6) =(3/(16))[(1+(√(17)))±(√((1+(√(17)))^2 −(1−(√(17)))))]  =(3/(16))[(1+(√(17)))±(√(17+3(√(17))))]  z_(7,8) =(3/(16))[(1−(√(17)))±(√((1−(√(17)))^2 −(1+(√(17)))))]  =(3/(16))[(1−(√(17)))±(√(17−3(√(17))))]
x+y=4xyx3+y3=9xy[x+y=p,xy=q]p33pq=9q{p=4qp33pq=9q(4q)33(4q)q=9q64q312q29q=0q(64q212q9)=01)q=0(x=0y=0,notokfororiginalquestion)2)64q212q9=0q=6±36+9×6464[q=xy=3×1±1732p=x+y=3×1±178]z238(1±17)z+332(1±17)=0z1,2=316[(1+17)±(1+17)2(1+17)]=316[(1+17)±17+17]z3,4=316[(117)±(117)2(117)]=316[(117)±1717]z5,6=316[(1+17)±(1+17)2(117)]=316[(1+17)±17+317]z7,8=316[(117)±(117)2(1+17)]=316[(117)±17317]
Commented by Tawa1 last updated on 25/Apr/19
God bless you sir
Godblessyousir
Answered by MJS last updated on 25/Apr/19
(i) ⇒ y=(x/(4x−1)) ⇒  ⇒ (ii) x^4 −(3/4)x^3 −((33)/(16))x^2 +(9/8)x−(9/(64))=0  put x_(1, 2) =α±(√β); x_(3, 4) =γ±(√δ)  (x−x_1 )(x−x_2 )(x−x_3 )(x−x_4 )=0  x^4 −2(α+γ)x^3 +(α^2 +4αγ−β+γ^2 +δ)x^2 −2(αγ(α+γ)+αδ−βγ)x+(α^2 −β)(γ^2 +δ)=0  now compare factors:  (1)  −2(α+γ)=−(3/4)  (2)  α^2 +4αγ−β+γ^2 +δ=−((33)/(16))  (3)  −2(αγ(α+γ)+αδ−βγ)=(9/8)  (4)  (α^2 −β)(γ^2 +δ)=−(9/(64))  now solve (1) for α, (2) for β, (3) for γ  α=(3/8)−γ  β=−2γ^2 +(3/4)γ+δ+((141)/(64))  δ=((32γ^3 −18γ^2 −33γ+9)/(2(16γ−3)))  ⇒ (4)  γ^6 −(9/8)γ^5 −((39)/(64))γ^4 +((369)/(512))γ^3 +((423)/(4096))γ^2 −((3051)/(32768))γ+((567)/(65536))=0  γ=r+(3/(16))  r^6 −((291)/(256))r^4 +((21267)/(65536))r^2 −((23409)/(16777216))=0  r=(√s)  s^3 −((291)/(256))s^2 +((21267)/(65536))s−((23409)/(16777216))=0  s=t+((97)/(256))  t^3 −((435)/(4096))t+((1673)/(131072))=0  trying factors of ((1673)/(131072)) ⇒ t_1 =(7/(32))  (we don′t need t_(2, 3) =−(7/(64))±((12(√2))/(64)))  t=(7/(32)) ⇒ s=((153)/(256)) ⇒ r=((3(√(17)))/(16)) ⇒ γ=(3/(16))+((3(√(17)))/(16))  now  α=(3/(16))−((3(√(17)))/(16))  β=((69)/(128))+((3(√(17)))/(128))  γ=(3/(16))+((3(√(17)))/(16))  δ=−((69)/(128))+((3(√(17)))/(16))  ⇒  x_1 =(3/(16))−((3(√(17)))/(16))−((√(6(23+(√(17)))))/(16))  x_2 =(3/(16))−((3(√(17)))/(16))+((√(6(23+(√(17)))))/(16))  x_(3, 4) ∉R  y_1 =x_2   y_2 =x_1
(i)y=x4x1(ii)x434x33316x2+98x964=0putx1,2=α±β;x3,4=γ±δ(xx1)(xx2)(xx3)(xx4)=0x42(α+γ)x3+(α2+4αγβ+γ2+δ)x22(αγ(α+γ)+αδβγ)x+(α2β)(γ2+δ)=0nowcomparefactors:(1)2(α+γ)=34(2)α2+4αγβ+γ2+δ=3316(3)2(αγ(α+γ)+αδβγ)=98(4)(α2β)(γ2+δ)=964nowsolve(1)forα,(2)forβ,(3)forγα=38γβ=2γ2+34γ+δ+14164δ=32γ318γ233γ+92(16γ3)(4)γ698γ53964γ4+369512γ3+4234096γ2305132768γ+56765536=0γ=r+316r6291256r4+2126765536r22340916777216=0r=ss3291256s2+2126765536s2340916777216=0s=t+97256t34354096t+1673131072=0tryingfactorsof1673131072t1=732(wedontneedt2,3=764±12264)t=732s=153256r=31716γ=316+31716nowα=31631716β=69128+317128γ=316+31716δ=69128+31716x1=316317166(23+17)16x2=31631716+6(23+17)16x3,4Ry1=x2y2=x1
Commented by MJS last updated on 25/Apr/19
I prepared these formulas, the rest is just  putting in the constants  x^4 +ax^3 +bx^2 +cx+d=0  (x−α−(√β))(x−α+(√β))(x−γ−(√δ))(x−γ+(√δ))=0  (1)  −2(α+γ)=a  (2)  α^2 +4αγ−β+γ^2 −δ=b  (3)  −2(αγ(α+γ)−αδ−βγ)=c  (4)  (α^2 −β)(γ^2 −δ)=d  ⇒  (1)  α=−γ−(a/2)  (2)  β=−2γ^2 −aγ−δ+(a^2 /4)−b  (3)  δ=−γ^2 −(a/2)γ+(((a^2 −4b)γ−2c)/(2(4γ+a)))  ⇒ β=−γ^2 −(a/2)γ+((2(a^2 −4b)γ+a^3 −4ab+4c)/(4(4γ+a)))  (4)  γ^6 +((3a)/2)γ^5 +((3a^2 +2b)/4)γ^4 +((a(a^2 +4b))/8)γ^3 +((2a^2 b+ac+b^2 −4d)/(16))γ^2 +((a(ac+b^2 −4d))/(32))γ−((a^2 d−abc+c^2 )/(64))=0  γ=r−(a/4)  r^6 −((3a^2 −8b)/(16))r^4 +((3a^4 −16(a^2 b−ac−b^2 +4d))/(256))r^2 −(((a^3 −4ab+8c)^2 )/(4096))=0  r=(√s)  s^3 −((3a^2 −8b)/(16))s^2 +((3a^4 −16(a^2 b−ac−b^2 +4d))/(256))s−(((a^3 −4ab+8c)^2 )/(4096))=0  s=t+((3a^2 −8b)/(48))  t^3 +((3ac−b^2 −12d)/(48))t−((2b^3 +9(3a^2 d−abc−8bd+3c^2 ))/(1728))=0  p=((3ac−b^2 −12d)/(48))  q=−((2b^3 +9(3a^2 d−abc−8bd+3c^2 ))/(1728))  now we have to  1. try factors of q ⇒ solved  2. calculate  D=(p^3 /(27))+(q^2 /4) and decide which method to use  D<0 ⇒ trigonometric solution  D≥0 ⇒ Cardano′s solution  in most cases we won′t get useable solutions  but we always get exact solutions  γ=(√(t+((3a^2 −8b)/(48))))−(a/4)  if t isn′t a “nice” number we cannot handle  α, β, γ, δ nor x= { ((α±(√β))),((γ±(√δ))) :}
Ipreparedtheseformulas,therestisjustputtingintheconstantsx4+ax3+bx2+cx+d=0(xαβ)(xα+β)(xγδ)(xγ+δ)=0(1)2(α+γ)=a(2)α2+4αγβ+γ2δ=b(3)2(αγ(α+γ)αδβγ)=c(4)(α2β)(γ2δ)=d(1)α=γa2(2)β=2γ2aγδ+a24b(3)δ=γ2a2γ+(a24b)γ2c2(4γ+a)β=γ2a2γ+2(a24b)γ+a34ab+4c4(4γ+a)(4)γ6+3a2γ5+3a2+2b4γ4+a(a2+4b)8γ3+2a2b+ac+b24d16γ2+a(ac+b24d)32γa2dabc+c264=0γ=ra4r63a28b16r4+3a416(a2bacb2+4d)256r2(a34ab+8c)24096=0r=ss33a28b16s2+3a416(a2bacb2+4d)256s(a34ab+8c)24096=0s=t+3a28b48t3+3acb212d48t2b3+9(3a2dabc8bd+3c2)1728=0p=3acb212d48q=2b3+9(3a2dabc8bd+3c2)1728nowwehaveto1.tryfactorsofqsolved2.calculateD=p327+q24anddecidewhichmethodtouseD<0trigonometricsolutionD0Cardanossolutioninmostcaseswewontgetuseablesolutionsbutwealwaysgetexactsolutionsγ=t+3a28b48a4iftisntanicenumberwecannothandleα,β,γ,δnorx={α±βγ±δ
Commented by Tawa1 last updated on 24/Apr/19
God bless you sir, i appreciate your time sir
Godblessyousir,iappreciateyourtimesir
Commented by tanmay last updated on 25/Apr/19
without using calculator how to solve this problem?  is it feasible to caculate such big number  65536,16777216,33768 etc to calculate by simple  +,−,×,/ etc
withoutusingcalculatorhowtosolvethisproblem?isitfeasibletocaculatesuchbignumber65536,16777216,33768etctocalculatebysimple+,,×,/etc
Commented by tanmay last updated on 25/Apr/19
ok sir
oksir
Answered by tanmay last updated on 24/Apr/19
x+y=4xy  x^3 +y^3 =9xy  (x+y)^3 −3xy(x+y)=9xy  64x^3 y^3 −12x^2 y^2 −9xy=0  xy≠0  64x^2 y^2 −12xy−9=0  xy=((12±(√(144+64×36)))/(2×64))=a    x+y=4a  xy=a  x(4a−x)=a  −x^2 +4ax−a=0  x^2 −4ax+a=0  x=((4a±(√(16a^2 −4a)))/2)  y=4a−(((4a±(√(16a^2 −4a)))/2))  pls calculate value of a ...i have apathy to caculate
x+y=4xyx3+y3=9xy(x+y)33xy(x+y)=9xy64x3y312x2y29xy=0xy064x2y212xy9=0xy=12±144+64×362×64=ax+y=4axy=ax(4ax)=ax2+4axa=0x24ax+a=0x=4a±16a24a2y=4a(4a±16a24a2)plscalculatevalueofaihaveapathytocaculate
Commented by Tawa1 last updated on 24/Apr/19
God bless you sir
Godblessyousir
Answered by Rasheed.Sindhi last updated on 24/Apr/19
(i)⇒((x+y)/(xy))=4 .......(iii)  (ii)⇒((x^3 +y^3 )/(xy))=9 ......(iv)  (iv)÷(iii):((x^3 +y^3 )/(x+y))=(9/4)                     x^2 +y^2 −xy=(9/4)                    (x+y)^2 −3xy=(9/4)  From (iii) xy=((x+y)/4)  So              (x+y)^2 −3(((x+y)/4))−(9/4)=0                  4(x+y)^2 −3(x+y)−9=0                     x+y=((3±(√(9−4(4)(−9))))/(2(4)))                               =((3±3(√(17)))/8)  Continue
(i)x+yxy=4.(iii)(ii)x3+y3xy=9(iv)(iv)÷(iii):x3+y3x+y=94x2+y2xy=94(x+y)23xy=94From(iii)xy=x+y4So(x+y)23(x+y4)94=04(x+y)23(x+y)9=0x+y=3±94(4)(9)2(4)=3±3178Continue
Commented by Tawa1 last updated on 24/Apr/19
God bless you sir
GodblessyousirGodblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *