Menu Close

solve-for-x-and-y-in-x-y-y-log8-x-x-x-log3-




Question Number 14404 by Nysiroke last updated on 31/May/17
solve for x and y in    x^y^y  =log8  x^x^x  =log3
$${solve}\:{for}\:{x}\:{and}\:{y}\:{in} \\ $$$$ \\ $$$${x}^{{y}^{{y}} } ={log}\mathrm{8} \\ $$$${x}^{{x}^{{x}} } ={log}\mathrm{3} \\ $$
Commented by prakash jain last updated on 31/May/17
x^x^x  =log_(10) 3  x=.34364 (calculator)
$${x}^{{x}^{{x}} } =\mathrm{log}_{\mathrm{10}} \mathrm{3} \\ $$$${x}=.\mathrm{34364}\:\left(\mathrm{calculator}\right) \\ $$
Commented by chux last updated on 01/Jun/17
please can we see the solution
$$\mathrm{please}\:\mathrm{can}\:\mathrm{we}\:\mathrm{see}\:\mathrm{the}\:\mathrm{solution} \\ $$
Commented by mrW1 last updated on 01/Jun/17
I think for x^x^x  =a we can not find  an analytical solution (formula). we can only  get numerical solution for concrete  values of a.
$${I}\:{think}\:{for}\:{x}^{{x}^{{x}} } ={a}\:{we}\:{can}\:{not}\:{find} \\ $$$${an}\:{analytical}\:{solution}\:\left({formula}\right).\:{we}\:{can}\:{only} \\ $$$${get}\:{numerical}\:{solution}\:{for}\:{concrete} \\ $$$${values}\:{of}\:{a}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *