Question Number 14404 by Nysiroke last updated on 31/May/17
$${solve}\:{for}\:{x}\:{and}\:{y}\:{in} \\ $$$$ \\ $$$${x}^{{y}^{{y}} } ={log}\mathrm{8} \\ $$$${x}^{{x}^{{x}} } ={log}\mathrm{3} \\ $$
Commented by prakash jain last updated on 31/May/17
$${x}^{{x}^{{x}} } =\mathrm{log}_{\mathrm{10}} \mathrm{3} \\ $$$${x}=.\mathrm{34364}\:\left(\mathrm{calculator}\right) \\ $$
Commented by chux last updated on 01/Jun/17
$$\mathrm{please}\:\mathrm{can}\:\mathrm{we}\:\mathrm{see}\:\mathrm{the}\:\mathrm{solution} \\ $$
Commented by mrW1 last updated on 01/Jun/17
$${I}\:{think}\:{for}\:{x}^{{x}^{{x}} } ={a}\:{we}\:{can}\:{not}\:{find} \\ $$$${an}\:{analytical}\:{solution}\:\left({formula}\right).\:{we}\:{can}\:{only} \\ $$$${get}\:{numerical}\:{solution}\:{for}\:{concrete} \\ $$$${values}\:{of}\:{a}. \\ $$