Menu Close

solve-for-x-and-y-tan-2-pi-x-y-cot-2-pi-x-y-1-2x-x-2-1-




Question Number 90739 by ajfour last updated on 25/Apr/20
solve for x and y  tan^2 [π(x+y)]+cot^2 [π(x+y)]                   =1+(√((2x)/(x^2 +1)))
$${solve}\:{for}\:{x}\:{and}\:{y} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]+\mathrm{cot}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Commented by me2love2math last updated on 26/Apr/20
max value or minimum?
$${max}\:{value}\:{or}\:{minimum}? \\ $$$$ \\ $$
Commented by ajfour last updated on 26/Apr/20
general values.
$${general}\:{values}. \\ $$
Answered by mr W last updated on 26/Apr/20
tan^2 [π(x+y)]+cot^2 [π(x+y)]=1+(√((2x)/(x^2 +1)))  tan^2 [π(x+y)]+cot^2 [π(x+y)]−2=(√((2x)/(x^2 +1)))−1  {tan [π(x+y)]−cot [π(x+y)]}^2 =(√((2x)/(x^2 +1)))−1  LHS={...}^2  ≥0  RHS=(√((2x)/(x^2 +1)))−1≤0  ⇒LHS=RHS=0  (√((2x)/(x^2 +1)))−1=0  ⇒x=1  tan [π(x+y)]−cot [π(x+y)]=0  tan^2  [π(x+y)]=1  tan [π(x+y)]=±1  ⇒π(x+y)=kπ±(π/4)  ⇒x+y=k±(1/4)  ⇒y=k−1±(1/4)  ⇒y=n±(1/4) with n=any integer  or  ⇒y=(n/2)+(1/4) with n=any integer
$$\mathrm{tan}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]+\mathrm{cot}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]=\mathrm{1}+\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]+\mathrm{cot}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]−\mathrm{2}=\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{1} \\ $$$$\left\{\mathrm{tan}\:\left[\pi\left({x}+{y}\right)\right]−\mathrm{cot}\:\left[\pi\left({x}+{y}\right)\right]\right\}^{\mathrm{2}} =\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{1} \\ $$$${LHS}=\left\{…\right\}^{\mathrm{2}} \:\geqslant\mathrm{0} \\ $$$${RHS}=\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{1}\leqslant\mathrm{0} \\ $$$$\Rightarrow{LHS}={RHS}=\mathrm{0} \\ $$$$\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{1} \\ $$$$\mathrm{tan}\:\left[\pi\left({x}+{y}\right)\right]−\mathrm{cot}\:\left[\pi\left({x}+{y}\right)\right]=\mathrm{0} \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\left[\pi\left({x}+{y}\right)\right]=\mathrm{1} \\ $$$$\mathrm{tan}\:\left[\pi\left({x}+{y}\right)\right]=\pm\mathrm{1} \\ $$$$\Rightarrow\pi\left({x}+{y}\right)={k}\pi\pm\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow{x}+{y}={k}\pm\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{y}={k}−\mathrm{1}\pm\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{y}={n}\pm\frac{\mathrm{1}}{\mathrm{4}}\:{with}\:{n}={any}\:{integer} \\ $$$${or} \\ $$$$\Rightarrow{y}=\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\:{with}\:{n}={any}\:{integer} \\ $$
Commented by mr W last updated on 26/Apr/20
a tricky question! i didn′t know how  to solve straight away.
$${a}\:{tricky}\:{question}!\:{i}\:{didn}'{t}\:{know}\:{how} \\ $$$${to}\:{solve}\:{straight}\:{away}. \\ $$
Commented by ajfour last updated on 26/Apr/20
Sir answer is  x=1, y=((2n−3)/4).
$${Sir}\:{answer}\:{is}\:\:{x}=\mathrm{1},\:{y}=\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{4}}. \\ $$
Commented by mr W last updated on 26/Apr/20
y=n±(1/4) and y=((2n−3)/4) are identical.
$${y}={n}\pm\frac{\mathrm{1}}{\mathrm{4}}\:{and}\:{y}=\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{4}}\:{are}\:{identical}. \\ $$
Commented by ajfour last updated on 26/Apr/20
i did not doubt, but couldn′t  understand very well, sir.  Anyway thanks, great solving!
$${i}\:{did}\:{not}\:{doubt},\:{but}\:{couldn}'{t} \\ $$$${understand}\:{very}\:{well},\:{sir}. \\ $$$${Anyway}\:{thanks},\:{great}\:{solving}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *