Menu Close

solve-for-x-and-y-tan-2-pi-x-y-cot-2-pi-x-y-1-2x-x-2-1-




Question Number 90739 by ajfour last updated on 25/Apr/20
solve for x and y  tan^2 [π(x+y)]+cot^2 [π(x+y)]                   =1+(√((2x)/(x^2 +1)))
solveforxandytan2[π(x+y)]+cot2[π(x+y)]=1+2xx2+1
Commented by me2love2math last updated on 26/Apr/20
max value or minimum?
maxvalueorminimum?
Commented by ajfour last updated on 26/Apr/20
general values.
generalvalues.
Answered by mr W last updated on 26/Apr/20
tan^2 [π(x+y)]+cot^2 [π(x+y)]=1+(√((2x)/(x^2 +1)))  tan^2 [π(x+y)]+cot^2 [π(x+y)]−2=(√((2x)/(x^2 +1)))−1  {tan [π(x+y)]−cot [π(x+y)]}^2 =(√((2x)/(x^2 +1)))−1  LHS={...}^2  ≥0  RHS=(√((2x)/(x^2 +1)))−1≤0  ⇒LHS=RHS=0  (√((2x)/(x^2 +1)))−1=0  ⇒x=1  tan [π(x+y)]−cot [π(x+y)]=0  tan^2  [π(x+y)]=1  tan [π(x+y)]=±1  ⇒π(x+y)=kπ±(π/4)  ⇒x+y=k±(1/4)  ⇒y=k−1±(1/4)  ⇒y=n±(1/4) with n=any integer  or  ⇒y=(n/2)+(1/4) with n=any integer
tan2[π(x+y)]+cot2[π(x+y)]=1+2xx2+1tan2[π(x+y)]+cot2[π(x+y)]2=2xx2+11{tan[π(x+y)]cot[π(x+y)]}2=2xx2+11LHS={}20RHS=2xx2+110LHS=RHS=02xx2+11=0x=1tan[π(x+y)]cot[π(x+y)]=0tan2[π(x+y)]=1tan[π(x+y)]=±1π(x+y)=kπ±π4x+y=k±14y=k1±14y=n±14withn=anyintegerory=n2+14withn=anyinteger
Commented by mr W last updated on 26/Apr/20
a tricky question! i didn′t know how  to solve straight away.
atrickyquestion!ididntknowhowtosolvestraightaway.
Commented by ajfour last updated on 26/Apr/20
Sir answer is  x=1, y=((2n−3)/4).
Siranswerisx=1,y=2n34.
Commented by mr W last updated on 26/Apr/20
y=n±(1/4) and y=((2n−3)/4) are identical.
y=n±14andy=2n34areidentical.
Commented by ajfour last updated on 26/Apr/20
i did not doubt, but couldn′t  understand very well, sir.  Anyway thanks, great solving!
ididnotdoubt,butcouldntunderstandverywell,sir.Anywaythanks,greatsolving!

Leave a Reply

Your email address will not be published. Required fields are marked *