Menu Close

Solve-for-x-and-y-x-2-2x-sin-xy-1-0-




Question Number 15298 by Tinkutara last updated on 09/Jun/17
Solve for x and y  x^2  + 2x sin(xy) + 1 = 0
Solveforxandyx2+2xsin(xy)+1=0
Commented by prakash jain last updated on 10/Jun/17
xy=u  x^2 +2xsin (u)+1=0  sin u=−((1+x^2 )/(2x))  f(x)=−((1+x^2 )/(2x))  f(x)≤−1 or f(x)≥1  only 2 solution for x for f(x)=±1  f(x)=−1⇒x=1  f(x)=1⇒x=−1  x=1  sin xy=−((1+x^2 )/(2x))=−1  sin (y)=−1⇒y=−(π/2)  x=−1  sin (−y)=−((1+x^2 )/(2x))  sin (−y)=1  sin (y)=−1⇒sin y=−1⇒y=−(π/2)  solutions:  x=1,y=−(π/2) (y can take 2nπ+((3π)/2))  x=−1,y=−(π/2) (y can take 2nπ+((3π)/2))
xy=ux2+2xsin(u)+1=0sinu=1+x22xf(x)=1+x22xf(x)1orf(x)1only2solutionforxforf(x)=±1f(x)=1x=1f(x)=1x=1x=1sinxy=1+x22x=1sin(y)=1y=π2x=1sin(y)=1+x22xsin(y)=1sin(y)=1siny=1y=π2solutions:x=1,y=π2(ycantake2nπ+3π2)x=1,y=π2(ycantake2nπ+3π2)
Commented by Tinkutara last updated on 10/Jun/17
But answer is (x, y) =  (1, (2n + 1)((3π)/2)) and (−1, (2n + 1)(π/2))
Butansweris(x,y)=(1,(2n+1)3π2)and(1,(2n+1)π2)
Commented by prakash jain last updated on 10/Jun/17
x^2 +2xsin (xy)+1=0  put x=1  2sin y+2=0  sin y=−1  what is the solution for y.  compare it with ur book′s answer.
x2+2xsin(xy)+1=0putx=12siny+2=0siny=1whatisthesolutionfory.compareitwithurbooksanswer.
Commented by prakash jain last updated on 10/Jun/17
3nπ+((3π)/2)   n=0 y=((3π)/2)  n=1 y=3π+((3π)/2)=3π+π+(π/2)=4π+(π/2)  put x=1,y=4π+(π/2) in original equation  does it satisfy the original equation?
3nπ+3π2n=0y=3π2n=1y=3π+3π2=3π+π+π2=4π+π2putx=1,y=4π+π2inoriginalequationdoesitsatisfytheoriginalequation?
Answered by Tinkutara last updated on 09/Jul/17
Given equation can be written as  [x + sin (xy)]^2  + cos^2  (xy) = 0  ∴ cos (xy) = 0 and x + sin (xy) = 0.  ⇒ x = ± 1  cos y = 0; sin y = −1 ⇒ y = (2n + 1)((3π)/2)  ⇒ (x, y) = (± 1, (2n + 1)((3π)/2))
Givenequationcanbewrittenas[x+sin(xy)]2+cos2(xy)=0cos(xy)=0andx+sin(xy)=0.x=±1cosy=0;siny=1y=(2n+1)3π2(x,y)=(±1,(2n+1)3π2)

Leave a Reply

Your email address will not be published. Required fields are marked *