Question Number 56321 by Tawa1 last updated on 14/Mar/19
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{x}}\:\:+\:\mathrm{y}\sqrt{\mathrm{y}}\:\:=\:\mathrm{182}\:\:\:\:\:\:…..\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{y}}\:\:+\:\mathrm{y}\sqrt{\mathrm{x}}\:\:=\:\mathrm{183}\:\:\:\:\:\:…..\:\left(\mathrm{ii}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Mar/19
$${x}={a}^{\mathrm{2}} \:\:\:{y}={b}^{\mathrm{2}} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{182} \\ $$$${a}^{\mathrm{2}} {b}+{ab}^{\mathrm{2}} =\mathrm{183} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left({a}+{b}\right)=\mathrm{182} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}×\mathrm{183}=\mathrm{182} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} =\mathrm{182}+\mathrm{549}=\mathrm{731} \\ $$$$\left({a}+{b}\right)=\left(\mathrm{731}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \approx\mathrm{9}.\mathrm{008}\rightarrow{consider}\:\mathrm{9} \\ $$$${a}+{b}=\mathrm{9} \\ $$$${ab}\left({a}+{b}\right)=\mathrm{183} \\ $$$${ab}=\frac{\mathrm{183}}{\left(\mathrm{731}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }=\frac{\mathrm{183}}{\mathrm{9}.\mathrm{008}}=\mathrm{20}.\mathrm{32} \\ $$$${for}\:{calculation}\:{easy}..{a}+{b}=\mathrm{9} \\ $$$${ab}=\mathrm{20} \\ $$$$\left(\mathrm{9}−{b}\right){b}=\mathrm{20} \\ $$$$\mathrm{9}{b}−{b}^{\mathrm{2}} −\mathrm{20}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} −\mathrm{9}{b}+\mathrm{20}=\mathrm{0} \\ $$$$\left({b}−\mathrm{4}\right)\left({b}−\mathrm{5}\right)=\mathrm{0} \\ $$$${b}=\mathrm{4}\:{and}\:\:\mathrm{5} \\ $$$${a}=\mathrm{5}\:{and}\:\mathrm{4} \\ $$$${x}=\mathrm{25}\:{and}\:\mathrm{16} \\ $$$${y}=\mathrm{16}\:{and}\:\mathrm{25} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Mar/19
$${the}\:{given}\:{problem}\:{can}\:{be}\:{solved}\:{but}\:{it}\:{need}\:{calculation} \\ $$$${so}\:{i}\:{approximated}\:{it}… \\ $$
Commented by Tawa1 last updated on 14/Mar/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by behi83417@gmail.com last updated on 14/Mar/19
$${x}={t}^{\mathrm{2}} ,{y}={s}^{\mathrm{2}} \\ $$$$\Rightarrow\begin{cases}{{t}^{\mathrm{3}} +{s}^{\mathrm{3}} =\mathrm{182}}\\{{t}^{\mathrm{2}} {s}+{s}^{\mathrm{2}} {t}=\mathrm{183}}\end{cases}\underset{{ts}={q}} {\overset{{t}+{s}={p}} {\Rightarrow}}\begin{cases}{\left({t}+{s}\right)\left({t}^{\mathrm{2}} +{s}^{\mathrm{2}} −{ts}\right)=\mathrm{182}}\\{{ts}\left({t}+{s}\right)=\mathrm{183}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{{p}\left({p}^{\mathrm{2}} −\mathrm{3}{q}\right)=\mathrm{182}}\\{{qp}=\mathrm{183}}\end{cases}\Rightarrow\begin{cases}{{p}^{\mathrm{3}} −\mathrm{3}{pq}=\mathrm{182}}\\{{pq}=\mathrm{183}}\end{cases} \\ $$$$\Rightarrow{p}^{\mathrm{3}} =\mathrm{3}×\mathrm{183}+\mathrm{182}=\mathrm{731} \\ $$$$\Rightarrow{p}#\mathrm{9}\Rightarrow{q}#\mathrm{20} \\ $$$$\Rightarrow\begin{cases}{{t}+{s}=\mathrm{9}}\\{{ts}=\mathrm{20}}\end{cases}\Rightarrow\begin{cases}{{t}=\mathrm{4}}\\{{s}=\mathrm{5}}\end{cases}\Rightarrow\begin{cases}{{x}=\mathrm{16}}\\{{y}=\mathrm{25}}\end{cases}\:\:\:.\blacksquare \\ $$
Commented by Tawa1 last updated on 14/Mar/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$