Menu Close

solve-for-x-by-using-lambert-function-2-x-3x-8-




Question Number 183825 by Michaelfaraday last updated on 30/Dec/22
solve for x by using lambert function  2^x +3x=8
$${solve}\:{for}\:{x}\:{by}\:{using}\:{lambert}\:{function} \\ $$$$\mathrm{2}^{{x}} +\mathrm{3}{x}=\mathrm{8} \\ $$
Answered by MJS_new last updated on 30/Dec/22
generally  b^x =ax+c  inserting x=−(t/(ln b))−(c/a) and transforming leads to  e^t t=−((ln b)/(b^(c/a) a))  ⇒ x=−(c/a)−(1/(ln b))W (−((ln b)/(b^(c/a) a)))
$$\mathrm{generally} \\ $$$${b}^{{x}} ={ax}+{c} \\ $$$$\mathrm{inserting}\:{x}=−\frac{{t}}{\mathrm{ln}\:{b}}−\frac{{c}}{{a}}\:\mathrm{and}\:\mathrm{transforming}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{e}^{{t}} {t}=−\frac{\mathrm{ln}\:{b}}{{b}^{{c}/{a}} {a}} \\ $$$$\Rightarrow\:{x}=−\frac{{c}}{{a}}−\frac{\mathrm{1}}{\mathrm{ln}\:{b}}{W}\:\left(−\frac{\mathrm{ln}\:{b}}{{b}^{{c}/{a}} {a}}\right) \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
thanks sir
$${thanks}\:{sir} \\ $$
Commented by MJS_new last updated on 31/Dec/22
you′re welcome
$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *