Question Number 183756 by Michaelfaraday last updated on 29/Dec/22
$${solve}\:{for}\:{x}\:{by}\:{using}\:{lambert}\:{function} \\ $$$${x}^{\mathrm{2}} =\mathrm{16}^{{x}} \\ $$
Answered by aleks041103 last updated on 30/Dec/22
$$\mathrm{2}{lnx}={xln}\mathrm{16} \\ $$$$\Rightarrow{lnx}={xln}\mathrm{4} \\ $$$$\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}}{{x}}\right)=−{ln}\left(\mathrm{4}\right) \\ $$$$\Rightarrow{ye}^{{y}} ={e}^{−{ln}\left(\mathrm{4}\right)} =\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\frac{\mathrm{1}}{{x}}={W}\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{{W}\left(\mathrm{1}/\mathrm{4}\right)} \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
$${sir},{are}\:{you}\:{sure}\:{about}\:{your}\:{solution} \\ $$$${because}\:{when}\:{i}\:{solve}\:{it},\:{i}\:{arrive}\:{at} \\ $$$${x}=\frac{−{W}\left(\frac{−\mathrm{1}}{\mathrm{2}}{In}\mathrm{16}\right)}{\frac{\mathrm{1}}{\mathrm{2}}{In}\mathrm{16}} \\ $$
Commented by mr W last updated on 30/Dec/22
$${you}\:{are}\:{wrong},\:{too}. \\ $$$${x}=−\frac{{W}\left(\frac{\mathrm{ln}\:\mathrm{16}}{\mathrm{2}}\right)}{\frac{\mathrm{ln}\:\mathrm{16}}{\mathrm{2}}}=−\frac{{W}\left(\mathrm{ln}\:\mathrm{4}\right)}{\mathrm{ln}\:\mathrm{4}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
$${but}\:{i}\:{got}\:{it}\:{sir}\:{but}\:{i}\:{just}\:{dont}\:{simplify}\:{it} \\ $$$${to}\:{lowest}\:{term}. \\ $$
Commented by mr W last updated on 30/Dec/22
$${i}\:{didn}'{t}\:{mean}\:{that}!\:{check}\:{again}!\: \\ $$$${you}\:{got}: \\ $$$${x}=\frac{−{W}\left(\frac{−\mathrm{1}}{\mathrm{2}}{In}\mathrm{16}\right)}{\frac{\mathrm{1}}{\mathrm{2}}{In}\mathrm{16}} \\ $$$${this}\:{is}\:{wrong}. \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
$${oh}\:{have}\:{seen}\:{it}\:{but}\:{i}\:{made}\:{a}\:{typo}\:{in}\:{answer} \\ $$$${thst}\:{is}\:{why},{thanks} \\ $$
Answered by MJS_new last updated on 30/Dec/22
$${x}^{\mathrm{2}} =\mathrm{16}^{{x}} \\ $$$$\mathrm{let}\:{x}=−\mathrm{e}^{−{t}} \\ $$$$\mathrm{e}^{−\mathrm{2}{t}} =\mathrm{16}^{−\mathrm{e}^{−{t}} } \\ $$$$−\mathrm{2}{t}=−\mathrm{e}^{−{t}} \mathrm{4ln}\:\mathrm{2} \\ $$$$\mathrm{e}^{{t}} {t}=\mathrm{2ln}\:\mathrm{2} \\ $$$$\mathrm{obviously}\:{t}=\mathrm{ln}\:\mathrm{2}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\Rightarrow\:{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
$${thanks}\:{sir} \\ $$