Menu Close

solve-for-x-C-x-3-4-x-5-4-3-




Question Number 47291 by MJS last updated on 07/Nov/18
solve for x∈C:  ∣x−(3/4)∣×∣x+(5/4)∣=3
solveforxC:x34×x+54∣=3
Answered by MrW3 last updated on 08/Nov/18
let x+(1/4)=a+bi  ∣x−(3/4)∣×∣x+(5/4)∣=3  (√((a−1)^2 +b^2 ))×(√((a+1)^2 +b^2 ))=3  [(a−1)^2 +b^2 ]×[(a+1)^2 +b^2 ]=9  (a^2 −1)^2 +b^2 [(a−1)^2 +(a+1)^2 ]+b^4 =9  b^4 +2(a^2 +1)b^2 +(a^2 +2)(a^2 −4)=0  b^2 =−(a^2 +1)±(√((a^2 +1)^2 −(a^2 +2)(a^2 −4)))  b^2 =−(a^2 +1)±(√(4a^2 +9))  b^2 ≥0  −(a^2 +1)+(√(4a^2 +9))≥0  (√(4a^2 +9))≥a^2 +1  4a^2 +9≥a^4 +2a^2 +1  a^4 −2a^2 −8≤0  (a^2 +2)(a^2 −4)≤0  a^2 −4≤0  ⇒−2≤a≤2  ⇒b^2 =(√(4a^2 +9))−a^2 −1  ⇒b=±(√((√(4a^2 +9))−a^2 −1))  ⇒x=(a−(1/4))±i(√((√(4a^2 +9))−a^2 −1))  with −2≤a≤2
letx+14=a+bix34×x+54∣=3(a1)2+b2×(a+1)2+b2=3[(a1)2+b2]×[(a+1)2+b2]=9(a21)2+b2[(a1)2+(a+1)2]+b4=9b4+2(a2+1)b2+(a2+2)(a24)=0b2=(a2+1)±(a2+1)2(a2+2)(a24)b2=(a2+1)±4a2+9b20(a2+1)+4a2+904a2+9a2+14a2+9a4+2a2+1a42a280(a2+2)(a24)0a2402a2b2=4a2+9a21b=±4a2+9a21x=(a14)±i4a2+9a21with2a2
Commented by MJS last updated on 09/Nov/18
thank you!
thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *