Menu Close

solve-for-x-gt-0-0-x-t-2-dt-2-x-1-Q180780-reposted-




Question Number 181020 by mr W last updated on 20/Nov/22
solve for x>0  ∫_0 ^x ⌊t⌋^2 dt=2(x−1)    (Q180780 reposted)
$${solve}\:{for}\:{x}>\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{{x}} \lfloor{t}\rfloor^{\mathrm{2}} {dt}=\mathrm{2}\left({x}−\mathrm{1}\right) \\ $$$$ \\ $$$$\left({Q}\mathrm{180780}\:{reposted}\right) \\ $$
Answered by mr W last updated on 20/Nov/22
say x=n+f with 0≤f<1  ⌊x⌋=n  ∫_0 ^x ⌊t⌋^2 dt=Σ_(k=0) ^(n−1) ∫_k ^(k+1) ⌊t⌋^2 dt+∫_n ^x ⌊t⌋^2 dt                   =Σ_(k=0) ^(n−1) ∫_k ^(k+1) k^2 dt+∫_n ^x n^2 dt                   =Σ_(k=0) ^(n−1) k^2 +n^2 (x−n)                   =(((n−1)n(2n−1))/6)+n^2 (x−n)  (((n−1)n(2n−1))/6)+n^2 (x−n)=2(x−1)  (((n−1)n(2n−1))/6)+n^2 f=2(n+f−1)  (2n^2 −n−12)(n−1)=6(2−n^2 )f  n=1:   f=0 ⇒x=1  n=2:  (8−2−12)(2−1)=6(2−4)f  f=(1/2) ⇒x=2+(1/2)=(5/2)  i.e. there are two roots: x=1, (5/2).
$${say}\:{x}={n}+{f}\:{with}\:\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$$\lfloor{x}\rfloor={n} \\ $$$$\int_{\mathrm{0}} ^{{x}} \lfloor{t}\rfloor^{\mathrm{2}} {dt}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \lfloor{t}\rfloor^{\mathrm{2}} {dt}+\int_{{n}} ^{{x}} \lfloor{t}\rfloor^{\mathrm{2}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} {k}^{\mathrm{2}} {dt}+\int_{{n}} ^{{x}} {n}^{\mathrm{2}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{k}^{\mathrm{2}} +{n}^{\mathrm{2}} \left({x}−{n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({n}−\mathrm{1}\right){n}\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{6}}+{n}^{\mathrm{2}} \left({x}−{n}\right) \\ $$$$\frac{\left({n}−\mathrm{1}\right){n}\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{6}}+{n}^{\mathrm{2}} \left({x}−{n}\right)=\mathrm{2}\left({x}−\mathrm{1}\right) \\ $$$$\frac{\left({n}−\mathrm{1}\right){n}\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{6}}+{n}^{\mathrm{2}} {f}=\mathrm{2}\left({n}+{f}−\mathrm{1}\right) \\ $$$$\left(\mathrm{2}{n}^{\mathrm{2}} −{n}−\mathrm{12}\right)\left({n}−\mathrm{1}\right)=\mathrm{6}\left(\mathrm{2}−{n}^{\mathrm{2}} \right){f} \\ $$$${n}=\mathrm{1}:\: \\ $$$${f}=\mathrm{0}\:\Rightarrow{x}=\mathrm{1} \\ $$$${n}=\mathrm{2}: \\ $$$$\left(\mathrm{8}−\mathrm{2}−\mathrm{12}\right)\left(\mathrm{2}−\mathrm{1}\right)=\mathrm{6}\left(\mathrm{2}−\mathrm{4}\right){f} \\ $$$${f}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{x}=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$${i}.{e}.\:{there}\:{are}\:{two}\:{roots}:\:{x}=\mathrm{1},\:\frac{\mathrm{5}}{\mathrm{2}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *