Menu Close

Solve-for-x-in-R-x-x-3-4-x-3-2x-8-0-




Question Number 94855 by mathocean1 last updated on 21/May/20
Solve for x in R  x(√(x+3))−4(√(x+3))+2x−8=0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathbb{R} \\ $$$${x}\sqrt{{x}+\mathrm{3}}−\mathrm{4}\sqrt{{x}+\mathrm{3}}+\mathrm{2}{x}−\mathrm{8}=\mathrm{0} \\ $$
Answered by ElOuafi last updated on 21/May/20
let ; x≥−3 then   x(√(x+3))−4(√(x+3))+2x−8=0          ⇔(x−4)(√(x+3))+2(x−4)=0          ⇔(x−4)((√(x+3))+2)=0          ⇔x−4=0 or (√(x+3))+2=0         ⇒x=4 because (√(x+3))+2>0 ∀x∈R  so the solution is 4
$${let}\:;\:{x}\geqslant−\mathrm{3}\:{then}\: \\ $$$${x}\sqrt{{x}+\mathrm{3}}−\mathrm{4}\sqrt{{x}+\mathrm{3}}+\mathrm{2}{x}−\mathrm{8}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\Leftrightarrow\left({x}−\mathrm{4}\right)\sqrt{{x}+\mathrm{3}}+\mathrm{2}\left({x}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\Leftrightarrow\left({x}−\mathrm{4}\right)\left(\sqrt{{x}+\mathrm{3}}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\Leftrightarrow{x}−\mathrm{4}=\mathrm{0}\:{or}\:\sqrt{{x}+\mathrm{3}}+\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\Rightarrow{x}=\mathrm{4}\:{because}\:\sqrt{{x}+\mathrm{3}}+\mathrm{2}>\mathrm{0}\:\forall{x}\in\mathbb{R} \\ $$$${so}\:{the}\:{solution}\:{is}\:\mathrm{4} \\ $$
Commented by mathocean1 last updated on 21/May/20
Thank you sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *