Menu Close

Solve-for-x-in-the-equation-below-ax-2-bx-c-0-




Question Number 119376 by Abdulmajeed last updated on 24/Oct/20
Solve for x in the equation below  ax^2  +bx + c = 0.
$${Solve}\:{for}\:\boldsymbol{{x}}\:{in}\:{the}\:{equation}\:{below} \\ $$$${ax}^{\mathrm{2}} \:+{bx}\:+\:{c}\:=\:\mathrm{0}. \\ $$
Commented by ZiYangLee last updated on 24/Oct/20
x=((−b±(√(b^2 −4ac)))/(2a))
$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$
Commented by peter frank last updated on 24/Oct/20
use complete the square
$$\mathrm{use}\:\mathrm{complete}\:\mathrm{the}\:\mathrm{square} \\ $$
Answered by peter frank last updated on 24/Oct/20
x^2 +(b/a)x=−(c/a)  add  ((b/(2a)))^2  both sides  x^2 +(b/a)x+((b/(2a)))^2 =−(c/a)+(b^2 /(4a^2 ))  (x+(b/(2a)))^2 =((b^2 −4ac)/(4a^2 ))  x+(b/(2a))=±(√((b^2 −4ac)/(4a^2 )))  x=−(b/(2a))±(√((b^2 −4ac)/(4a^2 )))  −(b/(2a))±((√(b^2 −4ac))/(2a))  x=((−b+(√(b^2 −4ac)))/(2a))
$$\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{b}}{\mathrm{a}}\mathrm{x}=−\frac{\mathrm{c}}{\mathrm{a}} \\ $$$$\mathrm{add}\:\:\left(\frac{\mathrm{b}}{\mathrm{2a}}\right)^{\mathrm{2}} \:\mathrm{both}\:\mathrm{sides} \\ $$$$\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{b}}{\mathrm{a}}\mathrm{x}+\left(\frac{\mathrm{b}}{\mathrm{2a}}\right)^{\mathrm{2}} =−\frac{\mathrm{c}}{\mathrm{a}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4a}^{\mathrm{2}} } \\ $$$$\left(\mathrm{x}+\frac{\mathrm{b}}{\mathrm{2a}}\right)^{\mathrm{2}} =\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}}{\mathrm{4a}^{\mathrm{2}} } \\ $$$$\mathrm{x}+\frac{\mathrm{b}}{\mathrm{2a}}=\pm\sqrt{\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}}{\mathrm{4a}^{\mathrm{2}} }} \\ $$$$\mathrm{x}=−\frac{\mathrm{b}}{\mathrm{2a}}\pm\sqrt{\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}}{\mathrm{4a}^{\mathrm{2}} }} \\ $$$$−\frac{\mathrm{b}}{\mathrm{2a}}\pm\frac{\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}}}{\mathrm{2a}} \\ $$$$\mathrm{x}=\frac{−\mathrm{b}+\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}}}{\mathrm{2a}} \\ $$
Commented by ZiYangLee last updated on 24/Oct/20
Nice
$$\mathrm{Nice} \\ $$
Answered by TANMAY PANACEA last updated on 24/Oct/20
4a(ax^2 +bx+c)=0  (2ax)^2 +2×2ax×b+b^2 +4ac−b^2 =0  (2ax+b)^2 =b^2 −4ac  x=((−b±(√(b^2 −4ac)))/(2a))
$$\mathrm{4}{a}\left({ax}^{\mathrm{2}} +{bx}+{c}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}{ax}\right)^{\mathrm{2}} +\mathrm{2}×\mathrm{2}{ax}×{b}+{b}^{\mathrm{2}} +\mathrm{4}{ac}−{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{2}{ax}+{b}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} −\mathrm{4}{ac} \\ $$$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$
Answered by malwan last updated on 25/Oct/20
ax^2  + bx + c = 0 (÷ x^2  )  ⇒ c((1/x))^2  + b((1/x)) + a = 0  c[((1/x))^2  + (b/c)((1/x)) + (a/c) ]= 0  ((1/x))^2  + (b/c)((1/x)) + (b^2 /(4c^2 )) = (b^2 /(4c^2 )) − (a/c)  [((1/x)) + (b/(2c)) ]^2  = ((b^2  − 4ac)/(4c^2 ))  (1/x) + (b/(2c)) = ± ((√(b^2 −4ac))/(2c))  (1/x) = ((−b ± (√(b^2 −4ac)))/(2c))  ⇒x = ((2c)/(−b ± (√(b^2 −4ac))))
$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\left(\boldsymbol{\div}\:{x}^{\mathrm{2}} \:\right) \\ $$$$\Rightarrow\:{c}\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \:+\:{b}\left(\frac{\mathrm{1}}{{x}}\right)\:+\:{a}\:=\:\mathrm{0} \\ $$$${c}\left[\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \:+\:\frac{{b}}{{c}}\left(\frac{\mathrm{1}}{{x}}\right)\:+\:\frac{{a}}{{c}}\:\right]=\:\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \:+\:\frac{{b}}{{c}}\left(\frac{\mathrm{1}}{{x}}\right)\:+\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}{c}^{\mathrm{2}} }\:=\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}{c}^{\mathrm{2}} }\:−\:\frac{{a}}{{c}} \\ $$$$\left[\left(\frac{\mathrm{1}}{{x}}\right)\:+\:\frac{{b}}{\mathrm{2}{c}}\:\right]^{\mathrm{2}} \:=\:\frac{{b}^{\mathrm{2}} \:−\:\mathrm{4}{ac}}{\mathrm{4}{c}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{x}}\:+\:\frac{{b}}{\mathrm{2}{c}}\:=\:\pm\:\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{c}} \\ $$$$\frac{\mathrm{1}}{{x}}\:=\:\frac{−{b}\:\pm\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{c}} \\ $$$$\Rightarrow{x}\:=\:\frac{\mathrm{2}{c}}{−{b}\:\pm\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *