Menu Close

Solve-for-x-in-the-range-0-x-2pi-the-equations-a-cos-x-pi-3-0-b-sin-x-cos-x-c-sin-2x-2sin-x-1-cos-x-




Question Number 39587 by Rio Mike last updated on 08/Jul/18
Solve for x in the range 0 ≤ x ≤2π  the equations  a) cos(x + (π/3)) = 0   b) sin x = cos x.  c) sin 2x + 2sin x = 1 + cos x
Solveforxintherange0x2πtheequationsa)cos(x+π3)=0b)sinx=cosx.c)sin2x+2sinx=1+cosx
Answered by Joel579 last updated on 08/Jul/18
cos (x + (π/3)) = 0  x + (π/3) = nπ + (π/2)    (n = 0, 1)  x = (π/6)  ∨   x = ((7π)/6)
cos(x+π3)=0x+π3=nπ+π2(n=0,1)x=π6x=7π6
Answered by Joel579 last updated on 08/Jul/18
sin x = cos x  tan x = 1  x = nπ + (π/4)  (n = 0)  x = (π/4)
sinx=cosxtanx=1x=nπ+π4(n=0)x=π4
Answered by Joel579 last updated on 08/Jul/18
2 sin x cos x + 2sin x = 1 + cos x  2sin x(cos x + 1) = 1 + cos x  2sin x(1 + cos x) − (1 + cos x) = 0  (2sin x − 1)(1 + cos x) = 0  sin x = (1/2)     →  x = (π/6), ((5π)/6)  cos x = −1  →  x = π
2sinxcosx+2sinx=1+cosx2sinx(cosx+1)=1+cosx2sinx(1+cosx)(1+cosx)=0(2sinx1)(1+cosx)=0sinx=12x=π6,5π6cosx=1x=π
Answered by MJS last updated on 08/Jul/18
(a) x+(π/3)=arccos 0 ={(π/2); ((3π)/2)}       x={(π/2)−(π/3); ((3π)/2)−(π/3)}={(π/6); ((7π)/6)}  (b) think of the circle x^2 +y^2 =1 again       cos θ =sin θ means we′re looking for the       points  (((cos θ)),((sin θ)) ) = ((p),(q) ) with p=q ⇒       ⇒ p=q=((√2)/2) ∨ p=q=−((√2)/2) ⇒        ⇒ θ={−((5π)/4); (π/4)}  (c) sin 2x=2sin x cos x       2sc+2s=1+c       2sc−c+2s−1=0       c(2s−1)+2s−1=0       (2s−1)(c+1)=0       2sin x −1=0 ∨ cos x +1=0       sin x =(1/2) ∨ cos x =−1       x=({(π/6); ((5π)/6)} ∪ {π})={(π/6); ((5π)/6); π}
(a)x+π3=arccos0={π2;3π2}x={π2π3;3π2π3}={π6;7π6}(b)thinkofthecirclex2+y2=1againcosθ=sinθmeanswerelookingforthepoints(cosθsinθ)=(pq)withp=qp=q=22p=q=22θ={5π4;π4}(c)sin2x=2sinxcosx2sc+2s=1+c2scc+2s1=0c(2s1)+2s1=0(2s1)(c+1)=02sinx1=0cosx+1=0sinx=12cosx=1x=({π6;5π6}{π})={π6;5π6;π}

Leave a Reply

Your email address will not be published. Required fields are marked *