Menu Close

solve-for-x-log-sinx-x-2-8x-23-gt-3-log-2-sinx-




Question Number 175369 by infinityaction last updated on 28/Aug/22
  solve for x     log_(∣sinx∣ ) (x^2 −8x+23) > (3/(log_2 ∣sinx∣ ))
solveforxlogsinx(x28x+23)>3log2sinx
Answered by floor(10²Eta[1]) last updated on 28/Aug/22
((log(x^2 −8x+23))/(log∣sinx∣))>((3log2)/(log∣sinx∣))  log(x^2 −8x+23)>log8  x^2 −8x+23>8⇒x^2 −8x+15>0  x<3 or x>5  sinx≠0⇒x≠kπ, k∈Z  log∣sinx∣≠0⇒∣sinx∣≠1⇒x=(((2n+1)π)/2)  ⇒S={x∈R−{kπ, (((2n+1)π)/2)}, k,n∈Z∣x∈(−∞,3)∪(5,∞)}
log(x28x+23)logsinx>3log2logsinxlog(x28x+23)>log8x28x+23>8x28x+15>0x<3orx>5sinx0xkπ,kZlogsinx∣≠0⇒∣sinx∣≠1x=(2n+1)π2S={xR{kπ,(2n+1)π2},k,nZx(,3)(5,)}
Commented by infinityaction last updated on 28/Aug/22
check your solution
checkyoursolution

Leave a Reply

Your email address will not be published. Required fields are marked *