Menu Close

solve-for-x-R-12-4x-x-2-1-4-1-8x-2x-2-2x-2-8x-13-




Question Number 174427 by mnjuly1970 last updated on 31/Jul/22
     solve  for   x ∈ R :     ((12+4x^  −x^( 2) ))^(1/4)  +(√(1+8x−2x^( 2) )) = 2x^( 2) −8x +13  ■
solveforxR:12+4xx24+1+8x2x2=2x28x+13◼
Answered by MJS_new last updated on 02/Aug/22
((12+4x−x^2 ))^(1/4) +(√(1+8x−2x^2 ))=13−8x+2x^2   x=(√y)+2  ((16−y))^(1/4) +(√(9−2y))=2y+5  now obviously y=0 because 2+3=5 ⇒  x=2
12+4xx24+1+8x2x2=138x+2x2x=y+216y4+92y=2y+5nowobviouslyy=0because2+3=5x=2
Commented by mnjuly1970 last updated on 01/Aug/22
thanks alot sir
thanksalotsir
Commented by MJS_new last updated on 01/Aug/22
I don′t think there are other solutions ∈C  Sirs, you have to test your solutions with  the given equation!
IdontthinkthereareothersolutionsCSirs,youhavetotestyoursolutionswiththegivenequation!
Commented by MJS_new last updated on 02/Aug/22
there was a typo x=(√y)+2  at least it′s obvious to me. to prove y=0 is  easy, simply insert. to prove there′s no other  solution you′ll have to solve it and show that  all the other solutions introduced by squaring  2 times are false. I haven′t got the time.
therewasatypox=y+2atleastitsobvioustome.toprovey=0iseasy,simplyinsert.toprovetheresnoothersolutionyoullhavetosolveitandshowthatalltheothersolutionsintroducedbysquaring2timesarefalse.Ihaventgotthetime.
Answered by behi834171 last updated on 01/Aug/22
1+8x−2x^2 =s^2 ,12+4x−x^2 =t^4   ⇒ { ((s+t=−s^2 +14⇒t=14−s−s^2 )),((s^2 −2t^4 =−23)) :}  ⇒s^2 −2(14−s−s^2 )^4 =−23⇒  s^2 −76832+10976s+10584s^2 −784s^3 −392s^4   +10976s−1568s^2 −1512s^3 +112s^4 +56s^5   +10584s^2 −1512s^3 −1458s^4 +108s^5 +54s^6   −784s^3 +112s^4 +108s^5 −8s^6 −4s^7   −392s^4 +56s^5 +54s^6 −4s^7 −2s^8 =−23  ⇒2s^8 +8s^7 −100s^6 −324s^5 +2018s^4   +4592s^3 −19691s^2 −21952s+76809=0   { ((s_1 =−5.44⇒−2x^2 +8x+1=29.6)),((s_2 =−3.36⇒−2x^2 +8x+1=11.3)) :}  ⇒ { ((x^2 −4x+14.3=0⇒x=2±3.2i)),((x^2 −4x+5.15=0⇒x=2±1.07i)) :}
1+8x2x2=s2,12+4xx2=t4{s+t=s2+14t=14ss2s22t4=23s22(14ss2)4=23s276832+10976s+10584s2784s3392s4+10976s1568s21512s3+112s4+56s5+10584s21512s31458s4+108s5+54s6784s3+112s4+108s58s64s7392s4+56s5+54s64s72s8=232s8+8s7100s6324s5+2018s4+4592s319691s221952s+76809=0{\boldsymbols1=5.442\boldsymbolx2+8\boldsymbolx+1=29.6\boldsymbols2=3.362\boldsymbolx2+8\boldsymbolx+1=11.3{\boldsymbolx24\boldsymbolx+14.3=0\boldsymbolx=2±3.2\boldsymboli\boldsymbolx24\boldsymbolx+5.15=0\boldsymbolx=2±1.07\boldsymboli
Commented by dragan91 last updated on 01/Aug/22
1+8x−2x^2 =s^2 ,12+4x−x^2 =t^4   ⇒ { ((∣s∣+∣t∣=−s^2 +14⇒t=14−s−s^2 )),((s^2 −2t^4 =−23)) :}  2t^4 −s^2 =23  ∣t∣=14−∣s∣−s^2   ∣s∣=3  ∣t∣=2  ⇒1+8x−2x^2 =9⇒x=2      ⇒s^2 −2(14−s−s^2 )^4 =−23⇒    s^2 −76832+10976s+10584s^2 −784s^3 −392s^4   +10976s−1568s^2 −1512s^3 +112s^4 +56s^5   +10584s^2 −1512s^3 −1458s^4 +108s^5 +54s^6   −784s^3 +112s^4 +108s^5 −8s^6 −4s^7   −392s^4 +56s^5 +54s^6 −4s^7 −2s^8 =−23  ⇒2s^8 +8s^7 −100s^6 −324s^5 +2018s^4   +4592s^3 −19691s^2 −21952s+76809=0   { ((s_1 =−5.44⇒−2x^2 +8x+1=29.6)),((s_2 =−3.36⇒−2x^2 +8x+1=11.3)) :}  ⇒ { ((x^2 −4x+14.3=0⇒x=2±3.2i)),((x^2 −4x+5.15=0⇒x=2±1.07i)) :}
1+8x2x2=s2,12+4xx2=t4{s+t∣=s2+14t=14ss2s22t4=232t4s2=23t∣=14ss2s∣=3t∣=21+8x2x2=9x=2s22(14ss2)4=23s276832+10976s+10584s2784s3392s4+10976s1568s21512s3+112s4+56s5+10584s21512s31458s4+108s5+54s6784s3+112s4+108s58s64s7392s4+56s5+54s64s72s8=232s8+8s7100s6324s5+2018s4+4592s319691s221952s+76809=0{\boldsymbols1=5.442\boldsymbolx2+8\boldsymbolx+1=29.6\boldsymbols2=3.362\boldsymbolx2+8\boldsymbolx+1=11.3{\boldsymbolx24\boldsymbolx+14.3=0\boldsymbolx=2±3.2\boldsymboli\boldsymbolx24\boldsymbolx+5.15=0\boldsymbolx=2±1.07\boldsymboli
Commented by MJS_new last updated on 02/Aug/22
you must test these solutions, they are false
youmusttestthesesolutions,theyarefalse
Commented by Tawa11 last updated on 02/Aug/22
Great sirs
Greatsirs
Answered by dragan91 last updated on 03/Aug/22
((16−4+4x−x^2 ))^(1/4) +(√(9−8+8x−2x^2 ))=2x^2 −8x+8+5  ((2^4 −(x−2)^2 ))^(1/4) +(√(3^2 −2(x−2)^2 ))=2(x−2)^2 +5  ((2^4 −(x−2)^2 ))^(1/4) ≤2  (√(3^2 −2(x−2)^2 ))≤3  2(x−2)^2 ≥5  only posible case 2+3=5  2(x−2)^2 +5=5  x−2=0⇒x=2
164+4xx24+98+8x2x2=2x28x+8+524(x2)24+322(x2)2=2(x2)2+524(x2)242322(x2)232(x2)25onlyposiblecase2+3=52(x2)2+5=5x2=0x=2

Leave a Reply

Your email address will not be published. Required fields are marked *