Question Number 161035 by cortano last updated on 11/Dec/21
$${Solve}\:{for}\:{x}\:\epsilon\:\mathbb{R}\: \\ $$$$\:\sqrt{\sqrt{\mathrm{3}}−{x}}\:=\:{x}\sqrt{\sqrt{\mathrm{3}}+{x}}\: \\ $$
Answered by Rasheed.Sindhi last updated on 11/Dec/21
$$\:\sqrt{\sqrt{\mathrm{3}}−{x}}\:=\:{x}\sqrt{\sqrt{\mathrm{3}}+{x}}\: \\ $$$$\sqrt{\mathrm{3}}\:−{x}={x}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}\:+{x}\right) \\ $$$${x}^{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}\:−{x}}{\:\sqrt{\mathrm{3}}\:+{x}}.\frac{\sqrt{\mathrm{3}}\:−{x}}{\:\sqrt{\mathrm{3}}\:−{x}}=\frac{\mathrm{3}+{x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\:{x}}{\mathrm{3}−{x}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} \left(\mathrm{3}−{x}^{\mathrm{2}} \right)={x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\:{x}+\mathrm{3} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\:{x}+\mathrm{3}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} =\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\:{x}+\mathrm{3}=\mathrm{0} \\ $$
Commented by blackmamba last updated on 11/Dec/21
$${only}\:{one}\:{is}\:{x}\:=\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}+\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{30}\sqrt{\mathrm{3}}}}{\mathrm{3}} \\ $$
Commented by cortano last updated on 11/Dec/21
$${typo} \\ $$
Answered by mr W last updated on 11/Dec/21
$$\sqrt{\mathrm{3}}−{x}={x}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}+{x}\right) \\ $$$${x}^{\mathrm{3}} +\sqrt{\mathrm{3}}{x}^{\mathrm{2}} +{x}−\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$${to}\:{avoid}\:\sqrt{\mathrm{3}},\:{let}\:{x}=\sqrt{\mathrm{3}}{t} \\ $$$$\Rightarrow{t}^{\mathrm{3}} +{t}^{\mathrm{2}} +\frac{{t}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$${to}\:{avoid}\:{t}^{\mathrm{2}} \:{term},\:{let}\:{t}={s}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{s}^{\mathrm{3}} =\frac{\mathrm{10}}{\mathrm{27}} \\ $$$$\Rightarrow{s}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}}}{\mathrm{3}} \\ $$$$\Rightarrow{t}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}}−\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{x}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$
Commented by cortano last updated on 11/Dec/21
$${no}.\:{i}\:{want}\:{prove}\:{that}\:{the}\:{answer}\:{is}\:{same}.\: \\ $$
Commented by cortano last updated on 11/Dec/21
$$\Rightarrow{x}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:+\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}\sqrt{\mathrm{3}}}}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{10}}{\mathrm{3}\sqrt{\mathrm{3}}}×\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{3}\sqrt{\mathrm{3}}}} \\ $$$$\Rightarrow{x}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{30}\sqrt{\mathrm{3}}}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 11/Dec/21
$${what}\:{do}\:{you}\:{want}\:{to}\:{say}? \\ $$$${is}\:{x}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{30}\sqrt{\mathrm{3}}}}{\mathrm{3}}\:{more}\:{correct}\:{than} \\ $$$${x}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:? \\ $$$${i}\:{prefer}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{to}\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{30}\sqrt{\mathrm{3}}}}{\mathrm{3}}. \\ $$
Commented by mr W last updated on 11/Dec/21
$${yes}.\:{they}\:{are}\:{the}\:{same}. \\ $$
Commented by cortano last updated on 11/Dec/21
$${thank}\:{you} \\ $$