Menu Close

solve-for-x-sin-2cos-1-cot-2tan-1-x-0-x-1-2-1-1-2-




Question Number 54755 by Knight last updated on 10/Feb/19
solve for x  sin[2cos^(−1) {cot(2tan^(−1) x)}]=0    (x = 1∓(√(2 )) , ∓1 ,−1∓(√2)  )
solveforxsin[2cos1{cot(2tan1x)}]=0(x=12,1,12)
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
θ=tan^(−1) x→tanθ=x  cot(2θ)=(1/(tan2θ))=((1−tan^2 θ)/(2tanθ))=((1−x^2 )/(2x))    now  sin[2cos^(−1) {cot(2tan^(−1) x)}]=0   sin[2cos^(−1) {cot(2tan^(−1) x)}]=sin0   or sinπ  2cos^(−1) {cot(2tan^(−1) x)}=0   or  π  cot(2tan^(−1) x)=cos((0/2))   or cos((π/2))  cot(2tan^(−1) x)=1   or   0  ((1−x^2 )/(2x))=1   or ((1−x^2 )/(2x))=0  when  1−x^2 =2x  x^2 +2x=1  (x+1)^2 =2  (x+1)=±(√2)   x=−1±(√2)   when  ((1−x^2 )/(2x))=0→1−x^2 =0→x^2 =1  so x=±1
θ=tan1xtanθ=xcot(2θ)=1tan2θ=1tan2θ2tanθ=1x22xnowsin[2cos1{cot(2tan1x)}]=0sin[2cos1{cot(2tan1x)}]=sin0orsinπ2cos1{cot(2tan1x)}=0orπcot(2tan1x)=cos(02)orcos(π2)cot(2tan1x)=1or01x22x=1or1x22x=0when1x2=2xx2+2x=1(x+1)2=2(x+1)=±2x=1±2when1x22x=01x2=0x2=1sox=±1

Leave a Reply

Your email address will not be published. Required fields are marked *