solve-for-x-sin-2cos-1-cot-2tan-1-x-0-x-1-2-1-1-2- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 54755 by Knight last updated on 10/Feb/19 solveforxsin[2cos−1{cot(2tan−1x)}]=0(x=1∓2,∓1,−1∓2) Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19 θ=tan−1x→tanθ=xcot(2θ)=1tan2θ=1−tan2θ2tanθ=1−x22xnowsin[2cos−1{cot(2tan−1x)}]=0sin[2cos−1{cot(2tan−1x)}]=sin0orsinπ2cos−1{cot(2tan−1x)}=0orπcot(2tan−1x)=cos(02)orcos(π2)cot(2tan−1x)=1or01−x22x=1or1−x22x=0when1−x2=2xx2+2x=1(x+1)2=2(x+1)=±2x=−1±2when1−x22x=0→1−x2=0→x2=1sox=±1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-ln-1-x-2-x-2-3-determine-f-n-x-and-developp-f-at-integr-serie-Next Next post: Question-120295 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.