Question Number 192898 by Red1ight last updated on 30/May/23
$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{2}=\mathrm{0} \\ $$
Commented by Frix last updated on 30/May/23
$$\mathrm{You}\:\mathrm{need}\:\mathrm{the}\:{Trigonometric}\:{Solution}\:\mathrm{to} \\ $$$$\mathrm{get}\:\mathrm{exact}\:\mathrm{solutions}: \\ $$$${x}_{\mathrm{1}} =−\frac{\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{3}}\mathrm{cos}\:\frac{\pi+\mathrm{2sin}^{−\mathrm{1}} \:\frac{\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{49}}}{\mathrm{6}}\:\approx−\mathrm{2}.\mathrm{48928857} \\ $$$${x}_{\mathrm{2}} =−\frac{\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{3}}\mathrm{sin}\:\frac{\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{49}}}{\mathrm{3}}\:\approx−.\mathrm{289168535} \\ $$$${x}_{\mathrm{3}} =\frac{\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{3}}\mathrm{sin}\:\frac{\pi+\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{49}}}{\mathrm{3}}\:\approx\mathrm{2}.\mathrm{77845712} \\ $$