Menu Close

solve-for-x-x-5-x-4-1-0-




Question Number 171835 by Mikenice last updated on 21/Jun/22
solve for x:  x^5 +x^4 +1=0
solveforx:x5+x4+1=0
Answered by floor(10²Eta[1]) last updated on 21/Jun/22
x^5 +x^4 +1=(x^2 +ax+1)(x^3 +bx^2 +cx+1)  x^5 +(a+b)x^4 +(ab+c+1)x^3 +(1+ac+b)x^2 +(a+c)x+1  a+b=1⇒b=1−a  ab+c=−1⇒ab−a=−1  ac+b=−1⇒−a^2 +b=−1⇒a^2 +a−2=0⇒a=−2 or 1  a+c=0⇒a=−c  only works a=1⇒b=0, c=−1  ⇒x^5 +x^4 +1=(x^2 +x+1)(x^3 −x+1)=0  x^2 +x+1=0⇒x=((−1±i(√3))/2)  x^3 −x+1=0  note that (a+b)^3 −3ab(a+b)−(a^3 +b^3 )=0  let x=a+b  x^3 −3abx−(a^3 +b^3 )=0  ⇒3ab=1⇒a^3 b^3 =(1/(27))=P  a^3 +b^3 =−1=S  ⇒a^3 , b^3  are the roots of  z^2 +z+(1/(27))=0⇒z=((−1±(5/(3(√3))))/2)=a^3  and b^3   ⇒x=a+b=(((−1+(5/(3(√3))))/2))^(1/3) +(((−1−(5/(3(√3))))/2))^(1/3)
x5+x4+1=(x2+ax+1)(x3+bx2+cx+1)x5+(a+b)x4+(ab+c+1)x3+(1+ac+b)x2+(a+c)x+1a+b=1b=1aab+c=1aba=1ac+b=1a2+b=1a2+a2=0a=2or1a+c=0a=conlyworksa=1b=0,c=1x5+x4+1=(x2+x+1)(x3x+1)=0x2+x+1=0x=1±i32x3x+1=0notethat(a+b)33ab(a+b)(a3+b3)=0letx=a+bx33abx(a3+b3)=03ab=1a3b3=127=Pa3+b3=1=Sa3,b3aretherootsofz2+z+127=0z=1±5332=a3andb3x=a+b=1+53323+153323

Leave a Reply

Your email address will not be published. Required fields are marked *