solve-for-x-x-5-x-4-1-0- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 171835 by Mikenice last updated on 21/Jun/22 solveforx:x5+x4+1=0 Answered by floor(10²Eta[1]) last updated on 21/Jun/22 x5+x4+1=(x2+ax+1)(x3+bx2+cx+1)x5+(a+b)x4+(ab+c+1)x3+(1+ac+b)x2+(a+c)x+1a+b=1⇒b=1−aab+c=−1⇒ab−a=−1ac+b=−1⇒−a2+b=−1⇒a2+a−2=0⇒a=−2or1a+c=0⇒a=−conlyworksa=1⇒b=0,c=−1⇒x5+x4+1=(x2+x+1)(x3−x+1)=0x2+x+1=0⇒x=−1±i32x3−x+1=0notethat(a+b)3−3ab(a+b)−(a3+b3)=0letx=a+bx3−3abx−(a3+b3)=0⇒3ab=1⇒a3b3=127=Pa3+b3=−1=S⇒a3,b3aretherootsofz2+z+127=0⇒z=−1±5332=a3andb3⇒x=a+b=−1+53323+−1−53323 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-1-x-2-1-x-3-dx-Next Next post: Question-40763 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.