Menu Close

Solve-for-x-x-a-x-b-3-x-2a-b-x-a-2b-




Question Number 181079 by Agnibhoo98 last updated on 21/Nov/22
Solve for x :  (((x + a)/(x + b)))^3 = ((x + 2a − b)/(x − a + 2b))
Solveforx:(x+ax+b)3=x+2abxa+2b
Commented by CElcedricjunior last updated on 21/Nov/22
(((x+a)/(x+b)))^3 =((x+2a−b)/(x−a+2b))  =>((x^3 +3ax^2 +3a^2 x+a^3 )/(x^3 +3b^2 x+3bx^2 +b^3 ))=((x+2a−b)/(x−a+2b))  =>x^2 (−3a^2 +6ab)+x(−3a^3 +6a^2 b)−a^4 +2a^3 b=x^2 (6b^2 a−3b^3 )+x(6ba−3b^2 )+2ab^3 −b^4   =>x^2 (−3a^2 +6ab−6b^2 a+3b^3 )+x(−3a^3 +6a^2 b−6ab+3b^2 )−a^4 +2a^3 b+2ab^3 +b^4 =0  x=((3a^2 (a−2b)+b(−3b+6a)∓(√((−3a^3 +6a^2 b−6ab+3b^2 )+4(a^4 −2a^3 b−2ab^3 −b^4 )(−3a^2 +6ab−6b^2 a+3b^3 ))))/(2(−3a^2 +6ab−6ab^2 +3b^3 )))  ...........le celebre cedric junior.....
(\boldsymbolx+\boldsymbola\boldsymbolx+\boldsymbolb)3=\boldsymbolx+2\boldsymbola\boldsymbolb\boldsymbolx\boldsymbola+2\boldsymbolb=>\boldsymbolx3+3\boldsymbolax2+3\boldsymbola2\boldsymbolx+\boldsymbola3\boldsymbolx3+3\boldsymbolb2\boldsymbolx+3\boldsymbolbx2+\boldsymbolb3=\boldsymbolx+2\boldsymbola\boldsymbolb\boldsymbolx\boldsymbola+2\boldsymbolb=>\boldsymbolx2(3\boldsymbola2+6\boldsymbolab)+\boldsymbolx(3\boldsymbola3+6\boldsymbola2\boldsymbolb)\boldsymbola4+2\boldsymbola3\boldsymbolb=\boldsymbolx2(6\boldsymbolb2\boldsymbola3\boldsymbolb3)+\boldsymbolx(6\boldsymbolba3\boldsymbolb2)+2\boldsymbolab3\boldsymbolb4=>\boldsymbolx2(3\boldsymbola2+6\boldsymbolab6\boldsymbolb2\boldsymbola+3\boldsymbolb3)+\boldsymbolx(3\boldsymbola3+6\boldsymbola2\boldsymbolb6\boldsymbolab+3\boldsymbolb2)\boldsymbola4+2\boldsymbola3\boldsymbolb+2\boldsymbolab3+\boldsymbolb4=0\boldsymbolx=3\boldsymbola2(\boldsymbola2\boldsymbolb)+\boldsymbolb(3\boldsymbolb+6\boldsymbola)(3\boldsymbola3+6\boldsymbola2\boldsymbolb6\boldsymbolab+3\boldsymbolb2)+4(\boldsymbola42\boldsymbola3\boldsymbolb2\boldsymbolab3\boldsymbolb4)(3\boldsymbola2+6\boldsymbolab6\boldsymbolb2\boldsymbola+3\boldsymbolb3)2(3\boldsymbola2+6\boldsymbolab6\boldsymbolab2+3\boldsymbolb3)..lecelebrecedricjunior..
Commented by Frix last updated on 22/Nov/22
wrong.
wrong.
Answered by Rasheed.Sindhi last updated on 21/Nov/22
(((x+a)^3 )/((x+b)^3 ))=((x+2a−b)/(x−a+2b))  (p^3 /q^3 )=(u/v)  ⇒((p^3 −q^3 )/(p^3 +q^3 ))=((u−v)/(u+v))  ⇒(((p−q)(p^2 +pq+q^2 ))/((p+q)(p^2 −pq+q^2 )))=((u−v)/(u+v))  p−q=x+a−x−b=a−b  p+q=x+a+x+b=2x+a+b  p^2 +pq+q^2 =(x^2 +2xa+a^2 )+(x^2 +(a+b)x+ab)+(x^2 +2xb+b^2 )                     =3x^2 +3x(a+b)+a^2 +ab+b^2   p^2 −pq+q^2 =(x^2 +2xa+a^2 )−(x^2 +(a+b)x+ab)+(x^2 +2xb+b^2 )                      =x^2 +x(a+b)+a^2 −ab+b^2   u−v=x+2a−b−x+a−2b=3(a−b)  u+v=x+2a−b+x−a+2b=2x+a+b  (((a−b)(3x^2 +x(a+b)+a^2 +ab+b^2 ))/((2x+a+b)(x^2 +x(a+b)+a^2 −ab+b^2 )))=((3(a−b))/(2x+a+b))  (((a−b)(3x^2 +3x(a+b)+a^2 +ab+b^2 ))/((2x+a+b)(3x^2 +x(a+b)+a^2 +ab+b^2 )))−((3(a−b))/(2x+a+b))=0  ((a−b)/(2x+a+b))(((3x^2 +3x(a+b)+a^2 +ab+b^2 )/(3x^2 +x(a+b)+a^2 +ab+b^2 ))−3)=0  ((a−b)/(2x+a+b^★ ))(((−6x^2 −2a^2 −2ab−2b^2 )/(x^2 +x(a+b)+a^2 −ab+b^(2★★) )))=0  a−b=0 ∣ −6x^2 −2a^2 −2ab−2b^2 =0  a=b ∣ 3x^2 =−(a^2 +ab+b^2 )  a=b ∣ x=±(√((−(a^2 +ab+b^2 ))/3))   ^★ 2x+a+b≠0⇒x≠−((a+b)/2)  ^(★★) 3x^2 +x(a+b)+a^2 +ab+b^2 ≠0          x≠((−(a+b)±(√(a^2 +2ab+b^2 −12(a^2 +ab+b^2 ))))/6)            ≠((−(a+b)±(√(−11a^2 −10ab−11b^2 )))/6)
(x+a)3(x+b)3=x+2abxa+2bp3q3=uvp3q3p3+q3=uvu+v(pq)(p2+pq+q2)(p+q)(p2pq+q2)=uvu+vpq=x+axb=abp+q=x+a+x+b=2x+a+bp2+pq+q2=(x2+2xa+a2)+(x2+(a+b)x+ab)+(x2+2xb+b2)=3x2+3x(a+b)+a2+ab+b2p2pq+q2=(x2+2xa+a2)(x2+(a+b)x+ab)+(x2+2xb+b2)=x2+x(a+b)+a2ab+b2uv=x+2abx+a2b=3(ab)u+v=x+2ab+xa+2b=2x+a+b(ab)(3x2+x(a+b)+a2+ab+b2)(2x+a+b)(x2+x(a+b)+a2ab+b2)=3(ab)2x+a+b(ab)(3x2+3x(a+b)+a2+ab+b2)(2x+a+b)(3x2+x(a+b)+a2+ab+b2)3(ab)2x+a+b=0ab2x+a+b(3x2+3x(a+b)+a2+ab+b23x2+x(a+b)+a2+ab+b23)=0ab2x+a+b(6x22a22ab2b2x2+x(a+b)+a2ab+b2)=0ab=06x22a22ab2b2=0a=b3x2=(a2+ab+b2)a=bx=±(a2+ab+b2)32x+a+b0xa+b23x2+x(a+b)+a2+ab+b20x(a+b)±a2+2ab+b212(a2+ab+b2)6(a+b)±11a210ab11b26
Answered by MJS_new last updated on 21/Nov/22
x=−((a+b)/2)
x=a+b2
Answered by mr W last updated on 21/Nov/22
if a=b:   x∈R and x≠−a    if a≠b:  (((x+a)^3 )/((x+b)^3 ))=((x+a+(a−b))/(x+b−(a−b)))  (x+a)^3 (x+b)−(a−b)(x+a)^3 =(x+b)^3 (x+a)+(a−b)(x+b)^3   (x+a)(x+b)[(x+a)^2 −(x+b)^2 ]=(a−b)(x+b)^3 +(a−b)(x+a)^3   (x+a)(x+b)[(x+a)+(x+b)]=(x+b)^3 +(x+a)^3   let u=x+a, v=x+b  uv(u+v)=u^3 +v^3 =(u+v)(u^2 −uv+v^2 )  (u+v)(u−v)^2 =0  (2x+a+b)(a−b)^2 =0  ⇒2x+a+b=0 ⇒x=−((a+b)/2)
ifa=b:xRandxaifab:(x+a)3(x+b)3=x+a+(ab)x+b(ab)(x+a)3(x+b)(ab)(x+a)3=(x+b)3(x+a)+(ab)(x+b)3(x+a)(x+b)[(x+a)2(x+b)2]=(ab)(x+b)3+(ab)(x+a)3(x+a)(x+b)[(x+a)+(x+b)]=(x+b)3+(x+a)3letu=x+a,v=x+buv(u+v)=u3+v3=(u+v)(u2uv+v2)(u+v)(uv)2=0(2x+a+b)(ab)2=02x+a+b=0x=a+b2
Answered by Frix last updated on 22/Nov/22
x≠−b∧x≠a−2b  (x+a)^3 (x−a+2b)−(x+b)^3 (x+2a−b)=0  (−2a^3 +6a^2 b−6ab^2 +2b^3 )x−a^4 +2a^3 b−2ab^3 +b^4 =0  −2(a−b)^3 x−(a+b)(a−b)^3 =0  (a−b)^3 (2x+a+b)=0  ⇒ (a=b∨x=−((a+b)/2))∧x≠−b∧x≠a−2b  ⇔  (a=b∧x∈R\{−b, a−2b})∨(a≠b∧x=−((a+b)/2))
xbxa2b(x+a)3(xa+2b)(x+b)3(x+2ab)=0(2a3+6a2b6ab2+2b3)xa4+2a3b2ab3+b4=02(ab)3x(a+b)(ab)3=0(ab)3(2x+a+b)=0(a=bx=a+b2)xbxa2b(a=bxR{b,a2b})(abx=a+b2)
Answered by manxsol last updated on 22/Nov/22
(((x+a)/(x+b)))^3 =((x+a+a−b)/( x+b−(a−b)))  (((x+a)/(x+b)))^3 =(((x+a)+[(x+a)−(x+b)])/((x+b)−[(x+a)−(x−b)]))  x+a=p  x+b=q  (p^3 /q^3 )=((2p−q)/(2q−p))  2qp^3 −p^4 =2pq^3 −q^4   2qp(p^2 −q^2 )=p^4 −q^4   (p^2 −q^2 )(p^2 −2qp+q^2 )=0  (p−q)(p+q)(p−q)^2 =0  (p−q)^3 (p+q)=0  p=q⇒x+a=x+b⇒a=b  p=−q⇒x+a^ =−x−b                    x=−(((a+b))/2)  resumen   determinant (((restriction),(solution)),((x≠{−b;a−2b}),(x=−((a+b)/2))),((a=b;x≠−b),(ℜ−{−b})))
(x+ax+b)3=x+a+abx+b(ab)(x+ax+b)3=(x+a)+[(x+a)(x+b)](x+b)[(x+a)(xb)]x+a=px+b=qp3q3=2pq2qp2qp3p4=2pq3q42qp(p2q2)=p4q4(p2q2)(p22qp+q2)=0(pq)(p+q)(pq)2=0(pq)3(p+q)=0p=qx+a=x+ba=bp=qx+a=xbx=(a+b)2resumenrestrictionsolutionx{b;a2b}x=a+b2a=b;xb{b}
Answered by Rasheed.Sindhi last updated on 22/Nov/22
(((x + a)/(x + b)))^3 = ((x + 2a − b)/(x − a + 2b)) ; x=?   determinant (((A=((A+B)/2)+((A−B)/2) _(B=((A+B)/2)−((A−B)/2)^( ) ) ^( ) )))   •a=((a+b)/2)+((a−b)/2)    •b=((a+b)/2)−((a−b)/2)  •2a−b=(((2a−b)+(−a+2b))/2)+(((2a−b)−(−a+2b))/2)               =((a+b)/2)+3(((a−b)/2))  •−a+2b=(((2a−b)+(−a+2b))/2)−(((2a−b)−(−a+2b))/2)                  =((a+b)/2)−3(((a−b)/2))  (((x+((a+b)/2)+((a−b)/2))^3 )/((x+((a+b)/2)−((a−b)/2))^3 ))=((x+((a+b)/2)+3(((a−b)/2)))/(x+((a+b)/2)−3(((a−b)/2))))  x+((a+b)/2)=y , ((a−b)/2)=k  (((y+k)^3 )/((y−k)^3 ))=((y+3k)/(y−3k))  (((y+k)^2 )/((y−k)^2 ))=(((y−k)(y+3k))/((y+k)(y−3k)))  ((y^2 +2ky+k^2 )/(y^2 −2ky+k^2 ))−1=((y^2 +2ky−3k^2 )/(y^2 −2ky−3k^2 ))−1  ((4ky)/(y^2 −2ky+k^2 ))=((4ky)/(y^2 −2ky−3k^2 ))  (y/(y^2 −2ky+k^2 ))−(y/(y^2 −2ky−3k^2 ))=0 ;k≠0  y((1/(y^2 −2ky+k^2 ))−(1/(y^2 −2ky−3k^2 )))=0  y=0^★  ∣ (1/(y^2 −2ky+k^2 ))−(1/(y^2 −2ky−3k^2 ))=0^⧫   ^★ y=0⇒x+((a+b)/2)=0⇒x=−((a+b)/2)  ^⧫ (1/(y^2 −2ky+k^2 ))−(1/(y^2 −2ky−3k^2 ))=0   (1/(y^2 −2ky+k^2 ))=(1/(y^2 −2ky−3k^2 ))       y^2 ^(×) −2ky^(×) −3k^2 =y^2 ^(×) −2ky^(×) +k^2              4k^2 =0⇒k=0⇒((a−b)/2)=0⇒a=b
(x+ax+b)3=x+2abxa+2b;x=?A=A+B2+AB2B=A+B2AB2a=a+b2+ab2b=a+b2ab22ab=(2ab)+(a+2b)2+(2ab)(a+2b)2=a+b2+3(ab2)a+2b=(2ab)+(a+2b)2(2ab)(a+2b)2=a+b23(ab2)(x+a+b2+ab2)3(x+a+b2ab2)3=x+a+b2+3(ab2)x+a+b23(ab2)x+a+b2=y,ab2=k(y+k)3(yk)3=y+3ky3k(y+k)2(yk)2=(yk)(y+3k)(y+k)(y3k)y2+2ky+k2y22ky+k21=y2+2ky3k2y22ky3k214kyy22ky+k2=4kyy22ky3k2yy22ky+k2yy22ky3k2=0;k0y(1y22ky+k21y22ky3k2)=0y=01y22ky+k21y22ky3k2=0y=0x+a+b2=0x=a+b21y22ky+k21y22ky3k2=01y22ky+k2=1y22ky3k2y2×2ky×3k2=y2×2ky×+k24k2=0k=0ab2=0a=b

Leave a Reply

Your email address will not be published. Required fields are marked *