Question Number 181079 by Agnibhoo98 last updated on 21/Nov/22

Commented by CElcedricjunior last updated on 21/Nov/22

Commented by Frix last updated on 22/Nov/22

Answered by Rasheed.Sindhi last updated on 21/Nov/22

Answered by MJS_new last updated on 21/Nov/22

Answered by mr W last updated on 21/Nov/22
![if a=b: x∈R and x≠−a if a≠b: (((x+a)^3 )/((x+b)^3 ))=((x+a+(a−b))/(x+b−(a−b))) (x+a)^3 (x+b)−(a−b)(x+a)^3 =(x+b)^3 (x+a)+(a−b)(x+b)^3 (x+a)(x+b)[(x+a)^2 −(x+b)^2 ]=(a−b)(x+b)^3 +(a−b)(x+a)^3 (x+a)(x+b)[(x+a)+(x+b)]=(x+b)^3 +(x+a)^3 let u=x+a, v=x+b uv(u+v)=u^3 +v^3 =(u+v)(u^2 −uv+v^2 ) (u+v)(u−v)^2 =0 (2x+a+b)(a−b)^2 =0 ⇒2x+a+b=0 ⇒x=−((a+b)/2)](https://www.tinkutara.com/question/Q181110.png)
Answered by Frix last updated on 22/Nov/22

Answered by manxsol last updated on 22/Nov/22
![(((x+a)/(x+b)))^3 =((x+a+a−b)/( x+b−(a−b))) (((x+a)/(x+b)))^3 =(((x+a)+[(x+a)−(x+b)])/((x+b)−[(x+a)−(x−b)])) x+a=p x+b=q (p^3 /q^3 )=((2p−q)/(2q−p)) 2qp^3 −p^4 =2pq^3 −q^4 2qp(p^2 −q^2 )=p^4 −q^4 (p^2 −q^2 )(p^2 −2qp+q^2 )=0 (p−q)(p+q)(p−q)^2 =0 (p−q)^3 (p+q)=0 p=q⇒x+a=x+b⇒a=b p=−q⇒x+a^ =−x−b x=−(((a+b))/2) resumen determinant (((restriction),(solution)),((x≠{−b;a−2b}),(x=−((a+b)/2))),((a=b;x≠−b),(ℜ−{−b})))](https://www.tinkutara.com/question/Q181136.png)
Answered by Rasheed.Sindhi last updated on 22/Nov/22
