Question Number 181079 by Agnibhoo98 last updated on 21/Nov/22
$$\mathrm{Solve}\:\mathrm{for}\:{x}\:: \\ $$$$\left(\frac{{x}\:+\:{a}}{{x}\:+\:{b}}\right)^{\mathrm{3}} =\:\frac{{x}\:+\:\mathrm{2}{a}\:−\:{b}}{{x}\:−\:{a}\:+\:\mathrm{2}{b}} \\ $$
Commented by CElcedricjunior last updated on 21/Nov/22
$$\left(\frac{\boldsymbol{{x}}+\boldsymbol{{a}}}{\boldsymbol{{x}}+\boldsymbol{{b}}}\right)^{\mathrm{3}} =\frac{\boldsymbol{{x}}+\mathrm{2}\boldsymbol{{a}}−\boldsymbol{{b}}}{\boldsymbol{{x}}−\boldsymbol{{a}}+\mathrm{2}\boldsymbol{{b}}} \\ $$$$=>\frac{\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{3}\boldsymbol{{ax}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{x}}+\boldsymbol{{a}}^{\mathrm{3}} }{\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{3}\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{x}}+\mathrm{3}\boldsymbol{{bx}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{3}} }=\frac{\boldsymbol{{x}}+\mathrm{2}\boldsymbol{{a}}−\boldsymbol{{b}}}{\boldsymbol{{x}}−\boldsymbol{{a}}+\mathrm{2}\boldsymbol{{b}}} \\ $$$$=>\boldsymbol{{x}}^{\mathrm{2}} \left(−\mathrm{3}\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{ab}}\right)+\boldsymbol{{x}}\left(−\mathrm{3}\boldsymbol{{a}}^{\mathrm{3}} +\mathrm{6}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}\right)−\boldsymbol{{a}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{a}}^{\mathrm{3}} \boldsymbol{{b}}=\boldsymbol{{x}}^{\mathrm{2}} \left(\mathrm{6}\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{a}}−\mathrm{3}\boldsymbol{{b}}^{\mathrm{3}} \right)+\boldsymbol{{x}}\left(\mathrm{6}\boldsymbol{{ba}}−\mathrm{3}\boldsymbol{{b}}^{\mathrm{2}} \right)+\mathrm{2}\boldsymbol{{ab}}^{\mathrm{3}} −\boldsymbol{{b}}^{\mathrm{4}} \\ $$$$=>\boldsymbol{{x}}^{\mathrm{2}} \left(−\mathrm{3}\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{ab}}−\mathrm{6}\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{a}}+\mathrm{3}\boldsymbol{{b}}^{\mathrm{3}} \right)+\boldsymbol{{x}}\left(−\mathrm{3}\boldsymbol{{a}}^{\mathrm{3}} +\mathrm{6}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}−\mathrm{6}\boldsymbol{{ab}}+\mathrm{3}\boldsymbol{{b}}^{\mathrm{2}} \right)−\boldsymbol{{a}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{a}}^{\mathrm{3}} \boldsymbol{{b}}+\mathrm{2}\boldsymbol{{ab}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{4}} =\mathrm{0} \\ $$$$\boldsymbol{{x}}=\frac{\mathrm{3}\boldsymbol{{a}}^{\mathrm{2}} \left(\boldsymbol{{a}}−\mathrm{2}\boldsymbol{{b}}\right)+\boldsymbol{{b}}\left(−\mathrm{3}\boldsymbol{{b}}+\mathrm{6}\boldsymbol{{a}}\right)\mp\sqrt{\left(−\mathrm{3}\boldsymbol{{a}}^{\mathrm{3}} +\mathrm{6}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}−\mathrm{6}\boldsymbol{{ab}}+\mathrm{3}\boldsymbol{{b}}^{\mathrm{2}} \right)+\mathrm{4}\left(\boldsymbol{{a}}^{\mathrm{4}} −\mathrm{2}\boldsymbol{{a}}^{\mathrm{3}} \boldsymbol{{b}}−\mathrm{2}\boldsymbol{{ab}}^{\mathrm{3}} −\boldsymbol{\mathrm{b}}^{\mathrm{4}} \right)\left(−\mathrm{3}\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{\mathrm{ab}}−\mathrm{6}\boldsymbol{\mathrm{b}}^{\mathrm{2}} \boldsymbol{\mathrm{a}}+\mathrm{3}\boldsymbol{\mathrm{b}}^{\mathrm{3}} \right)}}{\mathrm{2}\left(−\mathrm{3}\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{\mathrm{ab}}−\mathrm{6}\boldsymbol{\mathrm{ab}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{b}}^{\mathrm{3}} \right)} \\ $$$$………..{le}\:{celebre}\:{cedric}\:{junior}….. \\ $$
Commented by Frix last updated on 22/Nov/22
$$\mathrm{wrong}. \\ $$
Answered by Rasheed.Sindhi last updated on 21/Nov/22
$$\frac{\left({x}+{a}\right)^{\mathrm{3}} }{\left({x}+{b}\right)^{\mathrm{3}} }=\frac{{x}+\mathrm{2}{a}−{b}}{{x}−{a}+\mathrm{2}{b}} \\ $$$$\frac{{p}^{\mathrm{3}} }{{q}^{\mathrm{3}} }=\frac{{u}}{{v}} \\ $$$$\Rightarrow\frac{{p}^{\mathrm{3}} −{q}^{\mathrm{3}} }{{p}^{\mathrm{3}} +{q}^{\mathrm{3}} }=\frac{{u}−{v}}{{u}+{v}} \\ $$$$\Rightarrow\frac{\left({p}−{q}\right)\left({p}^{\mathrm{2}} +{pq}+{q}^{\mathrm{2}} \right)}{\left({p}+{q}\right)\left({p}^{\mathrm{2}} −{pq}+{q}^{\mathrm{2}} \right)}=\frac{{u}−{v}}{{u}+{v}} \\ $$$${p}−{q}={x}+{a}−{x}−{b}={a}−{b} \\ $$$${p}+{q}={x}+{a}+{x}+{b}=\mathrm{2}{x}+{a}+{b} \\ $$$${p}^{\mathrm{2}} +{pq}+{q}^{\mathrm{2}} =\left({x}^{\mathrm{2}} +\mathrm{2}{xa}+{a}^{\mathrm{2}} \right)+\left({x}^{\mathrm{2}} +\left({a}+{b}\right){x}+{ab}\right)+\left({x}^{\mathrm{2}} +\mathrm{2}{xb}+{b}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} −{pq}+{q}^{\mathrm{2}} =\left({x}^{\mathrm{2}} +\mathrm{2}{xa}+{a}^{\mathrm{2}} \right)−\left({x}^{\mathrm{2}} +\left({a}+{b}\right){x}+{ab}\right)+\left({x}^{\mathrm{2}} +\mathrm{2}{xb}+{b}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \\ $$$${u}−{v}={x}+\mathrm{2}{a}−{b}−{x}+{a}−\mathrm{2}{b}=\mathrm{3}\left({a}−{b}\right) \\ $$$${u}+{v}={x}+\mathrm{2}{a}−{b}+{x}−{a}+\mathrm{2}{b}=\mathrm{2}{x}+{a}+{b} \\ $$$$\frac{\left({a}−{b}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}{\left(\mathrm{2}{x}+{a}+{b}\right)\left({x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right)}=\frac{\mathrm{3}\left({a}−{b}\right)}{\mathrm{2}{x}+{a}+{b}} \\ $$$$\frac{\left({a}−{b}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}{\left(\mathrm{2}{x}+{a}+{b}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}−\frac{\mathrm{3}\left({a}−{b}\right)}{\mathrm{2}{x}+{a}+{b}}=\mathrm{0} \\ $$$$\frac{{a}−{b}}{\mathrm{2}{x}+{a}+{b}}\left(\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} }{\mathrm{3}{x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} }−\mathrm{3}\right)=\mathrm{0} \\ $$$$\frac{{a}−{b}}{\mathrm{2}{x}+{a}+{b}^{\bigstar} }\left(\frac{−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{ab}−\mathrm{2}{b}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}\bigstar\bigstar} }\right)=\mathrm{0} \\ $$$${a}−{b}=\mathrm{0}\:\mid\:−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{ab}−\mathrm{2}{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${a}={b}\:\mid\:\mathrm{3}{x}^{\mathrm{2}} =−\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right) \\ $$$${a}={b}\:\mid\:{x}=\pm\sqrt{\frac{−\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}{\mathrm{3}}}\: \\ $$$$\:^{\bigstar} \mathrm{2}{x}+{a}+{b}\neq\mathrm{0}\Rightarrow{x}\neq−\frac{{a}+{b}}{\mathrm{2}} \\ $$$$\:^{\bigstar\bigstar} \mathrm{3}{x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \neq\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:{x}\neq\frac{−\left({a}+{b}\right)\pm\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} −\mathrm{12}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}}{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\neq\frac{−\left({a}+{b}\right)\pm\sqrt{−\mathrm{11}{a}^{\mathrm{2}} −\mathrm{10}{ab}−\mathrm{11}{b}^{\mathrm{2}} }}{\mathrm{6}} \\ $$
Answered by MJS_new last updated on 21/Nov/22
$${x}=−\frac{{a}+{b}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 21/Nov/22
$${if}\:{a}={b}:\: \\ $$$${x}\in{R}\:{and}\:{x}\neq−{a} \\ $$$$ \\ $$$${if}\:{a}\neq{b}: \\ $$$$\frac{\left({x}+{a}\right)^{\mathrm{3}} }{\left({x}+{b}\right)^{\mathrm{3}} }=\frac{{x}+{a}+\left({a}−{b}\right)}{{x}+{b}−\left({a}−{b}\right)} \\ $$$$\left({x}+{a}\right)^{\mathrm{3}} \left({x}+{b}\right)−\left({a}−{b}\right)\left({x}+{a}\right)^{\mathrm{3}} =\left({x}+{b}\right)^{\mathrm{3}} \left({x}+{a}\right)+\left({a}−{b}\right)\left({x}+{b}\right)^{\mathrm{3}} \\ $$$$\left({x}+{a}\right)\left({x}+{b}\right)\left[\left({x}+{a}\right)^{\mathrm{2}} −\left({x}+{b}\right)^{\mathrm{2}} \right]=\left({a}−{b}\right)\left({x}+{b}\right)^{\mathrm{3}} +\left({a}−{b}\right)\left({x}+{a}\right)^{\mathrm{3}} \\ $$$$\left({x}+{a}\right)\left({x}+{b}\right)\left[\left({x}+{a}\right)+\left({x}+{b}\right)\right]=\left({x}+{b}\right)^{\mathrm{3}} +\left({x}+{a}\right)^{\mathrm{3}} \\ $$$${let}\:{u}={x}+{a},\:{v}={x}+{b} \\ $$$${uv}\left({u}+{v}\right)={u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\left({u}+{v}\right)\left({u}^{\mathrm{2}} −{uv}+{v}^{\mathrm{2}} \right) \\ $$$$\left({u}+{v}\right)\left({u}−{v}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{2}{x}+{a}+{b}\right)\left({a}−{b}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{x}+{a}+{b}=\mathrm{0}\:\Rightarrow{x}=−\frac{{a}+{b}}{\mathrm{2}} \\ $$
Answered by Frix last updated on 22/Nov/22
$${x}\neq−{b}\wedge{x}\neq{a}−\mathrm{2}{b} \\ $$$$\left({x}+{a}\right)^{\mathrm{3}} \left({x}−{a}+\mathrm{2}{b}\right)−\left({x}+{b}\right)^{\mathrm{3}} \left({x}+\mathrm{2}{a}−{b}\right)=\mathrm{0} \\ $$$$\left(−\mathrm{2}{a}^{\mathrm{3}} +\mathrm{6}{a}^{\mathrm{2}} {b}−\mathrm{6}{ab}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{3}} \right){x}−{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{3}} {b}−\mathrm{2}{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} =\mathrm{0} \\ $$$$−\mathrm{2}\left({a}−{b}\right)^{\mathrm{3}} {x}−\left({a}+{b}\right)\left({a}−{b}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$$\left({a}−{b}\right)^{\mathrm{3}} \left(\mathrm{2}{x}+{a}+{b}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\left({a}={b}\vee{x}=−\frac{{a}+{b}}{\mathrm{2}}\right)\wedge{x}\neq−{b}\wedge{x}\neq{a}−\mathrm{2}{b} \\ $$$$\Leftrightarrow \\ $$$$\left({a}={b}\wedge{x}\in\mathbb{R}\backslash\left\{−{b},\:{a}−\mathrm{2}{b}\right\}\right)\vee\left({a}\neq{b}\wedge{x}=−\frac{{a}+{b}}{\mathrm{2}}\right) \\ $$
Answered by manxsol last updated on 22/Nov/22
$$\left(\frac{{x}+{a}}{{x}+\mathrm{b}}\right)^{\mathrm{3}} =\frac{\mathrm{x}+\mathrm{a}+\mathrm{a}−\mathrm{b}}{\:\mathrm{x}+\mathrm{b}−\left(\mathrm{a}−\mathrm{b}\right)} \\ $$$$\left(\frac{\mathrm{x}+\mathrm{a}}{\mathrm{x}+\mathrm{b}}\right)^{\mathrm{3}} =\frac{\left(\mathrm{x}+\mathrm{a}\right)+\left[\left(\mathrm{x}+\mathrm{a}\right)−\left(\mathrm{x}+\mathrm{b}\right)\right]}{\left(\mathrm{x}+\mathrm{b}\right)−\left[\left(\mathrm{x}+\mathrm{a}\right)−\left(\mathrm{x}−\mathrm{b}\right)\right]} \\ $$$$\mathrm{x}+\mathrm{a}=\mathrm{p} \\ $$$$\mathrm{x}+\mathrm{b}=\mathrm{q} \\ $$$$\frac{\mathrm{p}^{\mathrm{3}} }{\mathrm{q}^{\mathrm{3}} }=\frac{\mathrm{2p}−\mathrm{q}}{\mathrm{2q}−\mathrm{p}} \\ $$$$\mathrm{2qp}^{\mathrm{3}} −\mathrm{p}^{\mathrm{4}} =\mathrm{2pq}^{\mathrm{3}} −\mathrm{q}^{\mathrm{4}} \\ $$$$\mathrm{2qp}\left(\mathrm{p}^{\mathrm{2}} −\mathrm{q}^{\mathrm{2}} \right)=\mathrm{p}^{\mathrm{4}} −\mathrm{q}^{\mathrm{4}} \\ $$$$\left(\mathrm{p}^{\mathrm{2}} −\mathrm{q}^{\mathrm{2}} \right)\left(\mathrm{p}^{\mathrm{2}} −\mathrm{2qp}+{q}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{p}−\mathrm{q}\right)\left(\mathrm{p}+\mathrm{q}\right)\left(\mathrm{p}−\mathrm{q}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{p}−\mathrm{q}\right)^{\mathrm{3}} \left(\mathrm{p}+\mathrm{q}\right)=\mathrm{0} \\ $$$$\mathrm{p}=\mathrm{q}\Rightarrow{x}+{a}={x}+{b}\Rightarrow{a}={b} \\ $$$${p}=−{q}\Rightarrow{x}+\overset{} {{a}}=−{x}−{b} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=−\frac{\left({a}+{b}\right)}{\mathrm{2}} \\ $$$${resumen} \\ $$$$\begin{array}{|c|c|c|}{{restriction}}&\hline{{solution}}\\{{x}\neq\left\{−{b};{a}−\mathrm{2}{b}\right\}}&\hline{{x}=−\frac{{a}+{b}}{\mathrm{2}}}\\{{a}={b};{x}\neq−{b}}&\hline{\Re−\left\{−{b}\right\}}\\\hline\end{array} \\ $$
Answered by Rasheed.Sindhi last updated on 22/Nov/22
$$\left(\frac{{x}\:+\:{a}}{{x}\:+\:{b}}\right)^{\mathrm{3}} =\:\frac{{x}\:+\:\mathrm{2}{a}\:−\:{b}}{{x}\:−\:{a}\:+\:\mathrm{2}{b}}\:;\:{x}=? \\ $$$$\begin{array}{|c|}{\underset{\overset{\:} {{B}=\frac{{A}+{B}}{\mathrm{2}}−\frac{{A}−{B}}{\mathrm{2}}}} {\overset{\:} {{A}=\frac{{A}+{B}}{\mathrm{2}}+\frac{{A}−{B}}{\mathrm{2}}\:}}}\\\hline\end{array}\: \\ $$$$\bullet{a}=\frac{{a}+{b}}{\mathrm{2}}+\frac{{a}−{b}}{\mathrm{2}}\:\: \\ $$$$\bullet{b}=\frac{{a}+{b}}{\mathrm{2}}−\frac{{a}−{b}}{\mathrm{2}} \\ $$$$\bullet\mathrm{2}{a}−{b}=\frac{\left(\mathrm{2}{a}−{b}\right)+\left(−{a}+\mathrm{2}{b}\right)}{\mathrm{2}}+\frac{\left(\mathrm{2}{a}−{b}\right)−\left(−{a}+\mathrm{2}{b}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{a}+{b}}{\mathrm{2}}+\mathrm{3}\left(\frac{{a}−{b}}{\mathrm{2}}\right) \\ $$$$\bullet−{a}+\mathrm{2}{b}=\frac{\left(\mathrm{2}{a}−{b}\right)+\left(−{a}+\mathrm{2}{b}\right)}{\mathrm{2}}−\frac{\left(\mathrm{2}{a}−{b}\right)−\left(−{a}+\mathrm{2}{b}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{a}+{b}}{\mathrm{2}}−\mathrm{3}\left(\frac{{a}−{b}}{\mathrm{2}}\right) \\ $$$$\frac{\left({x}+\frac{{a}+{b}}{\mathrm{2}}+\frac{{a}−{b}}{\mathrm{2}}\right)^{\mathrm{3}} }{\left({x}+\frac{{a}+{b}}{\mathrm{2}}−\frac{{a}−{b}}{\mathrm{2}}\right)^{\mathrm{3}} }=\frac{{x}+\frac{{a}+{b}}{\mathrm{2}}+\mathrm{3}\left(\frac{{a}−{b}}{\mathrm{2}}\right)}{{x}+\frac{{a}+{b}}{\mathrm{2}}−\mathrm{3}\left(\frac{{a}−{b}}{\mathrm{2}}\right)} \\ $$$${x}+\frac{{a}+{b}}{\mathrm{2}}={y}\:,\:\frac{{a}−{b}}{\mathrm{2}}={k} \\ $$$$\frac{\left({y}+{k}\right)^{\mathrm{3}} }{\left({y}−{k}\right)^{\mathrm{3}} }=\frac{{y}+\mathrm{3}{k}}{{y}−\mathrm{3}{k}} \\ $$$$\frac{\left({y}+{k}\right)^{\mathrm{2}} }{\left({y}−{k}\right)^{\mathrm{2}} }=\frac{\left({y}−{k}\right)\left({y}+\mathrm{3}{k}\right)}{\left({y}+{k}\right)\left({y}−\mathrm{3}{k}\right)} \\ $$$$\frac{{y}^{\mathrm{2}} +\mathrm{2}{ky}+{k}^{\mathrm{2}} }{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }−\mathrm{1}=\frac{{y}^{\mathrm{2}} +\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} }{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} }−\mathrm{1} \\ $$$$\frac{\mathrm{4}{ky}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }=\frac{\mathrm{4}{ky}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} } \\ $$$$\frac{{y}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }−\frac{{y}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} }=\mathrm{0}\:;{k}\neq\mathrm{0} \\ $$$${y}\left(\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$${y}=\mathrm{0}^{\bigstar} \:\mid\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} }=\mathrm{0}^{\blacklozenge} \\ $$$$\:^{\bigstar} {y}=\mathrm{0}\Rightarrow{x}+\frac{{a}+{b}}{\mathrm{2}}=\mathrm{0}\Rightarrow{x}=−\frac{{a}+{b}}{\mathrm{2}} \\ $$$$\:^{\blacklozenge} \frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}+{k}^{\mathrm{2}} }=\frac{\mathrm{1}}{{y}^{\mathrm{2}} −\mathrm{2}{ky}−\mathrm{3}{k}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\overset{×} {{y}^{\mathrm{2}} }−\overset{×} {\mathrm{2}{ky}}−\mathrm{3}{k}^{\mathrm{2}} =\overset{×} {{y}^{\mathrm{2}} }−\overset{×} {\mathrm{2}{ky}}+{k}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{k}^{\mathrm{2}} =\mathrm{0}\Rightarrow{k}=\mathrm{0}\Rightarrow\frac{{a}−{b}}{\mathrm{2}}=\mathrm{0}\Rightarrow{a}={b} \\ $$