Menu Close

Solve-for-x-x-log-5-3x-12x-




Question Number 124880 by WilliamsErinfolami last updated on 06/Dec/20
Solve for x  x^(log_5 3x) =12x
Solveforxxlog53x=12x
Answered by mr W last updated on 06/Dec/20
(log_5  3x)(log_5  x)=log_5  (12x)  (log_5  3+log_5  x)(log_5  x)=log_5  12+log_5  x  (log_5  3+t)t=log_5  12+t  t^2 −(1−log_5  3)t−log_5  12=0  t=((1−log_5  3±(√((1−log_5  3)^2 +4log_5  12)))/2)  log_5  x=((1−log_5  3±(√((1−log_5  3)^2 +4log_5  12)))/2)  ⇒x=5^((1−log_5  3±(√((1−log_5  3)^2 +4log_5  12)))/2)   =9.693765, 0.171932
(log53x)(log5x)=log5(12x)(log53+log5x)(log5x)=log512+log5x(log53+t)t=log512+tt2(1log53)tlog512=0t=1log53±(1log53)2+4log5122log5x=1log53±(1log53)2+4log5122x=51log53±(1log53)2+4log5122=9.693765,0.171932
Answered by aleks041103 last updated on 06/Dec/20
log_x (12x)=log_5 (3x)  1+log_x (12)=log_5 3 + log_5 x  1+((log_5 12)/(log_5 x)) = log_5 3 + log_5 x  t=log_5 x ⇒ x=5^t   t+log_5 12 = t^2 +(log_5 3)t  ⇒t^2 −(1−log_5 3)t−log_5 12 =0  t_(1,2) =((1−log_5 3±(√((1−log_5 3)^2 +4log_5 12)))/2)  ⇒x_(1,2) =5^t_(1,2)
logx(12x)=log5(3x)1+logx(12)=log53+log5x1+log512log5x=log53+log5xt=log5xx=5tt+log512=t2+(log53)tt2(1log53)tlog512=0t1,2=1log53±(1log53)2+4log5122x1,2=5t1,2

Leave a Reply

Your email address will not be published. Required fields are marked *