Menu Close

Solve-for-x-x-log-5-3x-12x-




Question Number 124880 by WilliamsErinfolami last updated on 06/Dec/20
Solve for x  x^(log_5 3x) =12x
$${Solve}\:{for}\:{x} \\ $$$${x}^{{log}_{\mathrm{5}} \mathrm{3}{x}} =\mathrm{12}{x} \\ $$
Answered by mr W last updated on 06/Dec/20
(log_5  3x)(log_5  x)=log_5  (12x)  (log_5  3+log_5  x)(log_5  x)=log_5  12+log_5  x  (log_5  3+t)t=log_5  12+t  t^2 −(1−log_5  3)t−log_5  12=0  t=((1−log_5  3±(√((1−log_5  3)^2 +4log_5  12)))/2)  log_5  x=((1−log_5  3±(√((1−log_5  3)^2 +4log_5  12)))/2)  ⇒x=5^((1−log_5  3±(√((1−log_5  3)^2 +4log_5  12)))/2)   =9.693765, 0.171932
$$\left(\mathrm{log}_{\mathrm{5}} \:\mathrm{3}{x}\right)\left(\mathrm{log}_{\mathrm{5}} \:{x}\right)=\mathrm{log}_{\mathrm{5}} \:\left(\mathrm{12}{x}\right) \\ $$$$\left(\mathrm{log}_{\mathrm{5}} \:\mathrm{3}+\mathrm{log}_{\mathrm{5}} \:{x}\right)\left(\mathrm{log}_{\mathrm{5}} \:{x}\right)=\mathrm{log}_{\mathrm{5}} \:\mathrm{12}+\mathrm{log}_{\mathrm{5}} \:{x} \\ $$$$\left(\mathrm{log}_{\mathrm{5}} \:\mathrm{3}+{t}\right){t}=\mathrm{log}_{\mathrm{5}} \:\mathrm{12}+{t} \\ $$$${t}^{\mathrm{2}} −\left(\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\right){t}−\mathrm{log}_{\mathrm{5}} \:\mathrm{12}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\pm\sqrt{\left(\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4log}_{\mathrm{5}} \:\mathrm{12}}}{\mathrm{2}} \\ $$$$\mathrm{log}_{\mathrm{5}} \:{x}=\frac{\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\pm\sqrt{\left(\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4log}_{\mathrm{5}} \:\mathrm{12}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{5}^{\frac{\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\pm\sqrt{\left(\mathrm{1}−\mathrm{log}_{\mathrm{5}} \:\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4log}_{\mathrm{5}} \:\mathrm{12}}}{\mathrm{2}}} \\ $$$$=\mathrm{9}.\mathrm{693765},\:\mathrm{0}.\mathrm{171932} \\ $$
Answered by aleks041103 last updated on 06/Dec/20
log_x (12x)=log_5 (3x)  1+log_x (12)=log_5 3 + log_5 x  1+((log_5 12)/(log_5 x)) = log_5 3 + log_5 x  t=log_5 x ⇒ x=5^t   t+log_5 12 = t^2 +(log_5 3)t  ⇒t^2 −(1−log_5 3)t−log_5 12 =0  t_(1,2) =((1−log_5 3±(√((1−log_5 3)^2 +4log_5 12)))/2)  ⇒x_(1,2) =5^t_(1,2)
$${log}_{{x}} \left(\mathrm{12}{x}\right)={log}_{\mathrm{5}} \left(\mathrm{3}{x}\right) \\ $$$$\mathrm{1}+{log}_{{x}} \left(\mathrm{12}\right)={log}_{\mathrm{5}} \mathrm{3}\:+\:{log}_{\mathrm{5}} {x} \\ $$$$\mathrm{1}+\frac{{log}_{\mathrm{5}} \mathrm{12}}{{log}_{\mathrm{5}} {x}}\:=\:{log}_{\mathrm{5}} \mathrm{3}\:+\:{log}_{\mathrm{5}} {x} \\ $$$${t}={log}_{\mathrm{5}} {x}\:\Rightarrow\:{x}=\mathrm{5}^{{t}} \\ $$$${t}+{log}_{\mathrm{5}} \mathrm{12}\:=\:{t}^{\mathrm{2}} +\left({log}_{\mathrm{5}} \mathrm{3}\right){t} \\ $$$$\Rightarrow{t}^{\mathrm{2}} −\left(\mathrm{1}−{log}_{\mathrm{5}} \mathrm{3}\right){t}−{log}_{\mathrm{5}} \mathrm{12}\:=\mathrm{0} \\ $$$${t}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}−{log}_{\mathrm{5}} \mathrm{3}\pm\sqrt{\left(\mathrm{1}−{log}_{\mathrm{5}} \mathrm{3}\right)^{\mathrm{2}} +\mathrm{4}{log}_{\mathrm{5}} \mathrm{12}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}_{\mathrm{1},\mathrm{2}} =\mathrm{5}^{{t}_{\mathrm{1},\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *