Menu Close

solve-for-x-x-x-x-16-x-2-but-how-to-use-Lambert-W-function-




Question Number 63175 by Tawa1 last updated on 30/Jun/19
solve for x                     x^x^x   =  16  x = 2,     but how to use Lambert W function
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:=\:\:\mathrm{16} \\ $$$$\mathrm{x}\:=\:\mathrm{2},\:\:\:\:\:\mathrm{but}\:\mathrm{how}\:\mathrm{to}\:\mathrm{use}\:\mathrm{Lambert}\:\mathrm{W}\:\mathrm{function} \\ $$
Commented by mr W last updated on 30/Jun/19
i remember you have asked the same  question in an earlier time. the answer  is you can not use Lambert function  to solve it. besides, it is not clear  what is meant concretely with x^x^x  .  3^3^3  =3^9  or 3^(27)  or 27^3  ?
$${i}\:{remember}\:{you}\:{have}\:{asked}\:{the}\:{same} \\ $$$${question}\:{in}\:{an}\:{earlier}\:{time}.\:{the}\:{answer} \\ $$$${is}\:{you}\:{can}\:{not}\:{use}\:{Lambert}\:{function} \\ $$$${to}\:{solve}\:{it}.\:{besides},\:{it}\:{is}\:{not}\:{clear} \\ $$$${what}\:{is}\:{meant}\:{concretely}\:{with}\:{x}^{{x}^{{x}} } . \\ $$$$\mathrm{3}^{\mathrm{3}^{\mathrm{3}} } =\mathrm{3}^{\mathrm{9}} \:{or}\:\mathrm{3}^{\mathrm{27}} \:{or}\:\mathrm{27}^{\mathrm{3}} \:? \\ $$
Commented by Tawa1 last updated on 30/Jun/19
Alright sir,  hint me on the       x^x^x^x    =  49,   again sir.
$$\mathrm{Alright}\:\mathrm{sir},\:\:\mathrm{hint}\:\mathrm{me}\:\mathrm{on}\:\mathrm{the}\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} } } \:=\:\:\mathrm{49},\:\:\:\mathrm{again}\:\mathrm{sir}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *