Menu Close

solve-for-x-x-x-x-2-2048-by-using-lambert-function-




Question Number 183769 by Michaelfaraday last updated on 29/Dec/22
solve for x:  x^x^x  =2^(2048)   by using lambert function
$${solve}\:{for}\:{x}: \\ $$$${x}^{{x}^{{x}} } =\mathrm{2}^{\mathrm{2048}} \\ $$$${by}\:{using}\:{lambert}\:{function} \\ $$
Commented by mr W last updated on 30/Dec/22
it has no solution by lambert!  no solution by anything!
$${it}\:{has}\:{no}\:{solution}\:{by}\:{lambert}! \\ $$$${no}\:{solution}\:{by}\:{anything}! \\ $$
Commented by mr W last updated on 30/Dec/22
4^4^4  =2^(512) <2^(2048)   5^5^5  =5^(3125) >2^(2048)   ⇒the root of x^x^x  =2^(2048)  lies between  4 and 5.
$$\mathrm{4}^{\mathrm{4}^{\mathrm{4}} } =\mathrm{2}^{\mathrm{512}} <\mathrm{2}^{\mathrm{2048}} \\ $$$$\mathrm{5}^{\mathrm{5}^{\mathrm{5}} } =\mathrm{5}^{\mathrm{3125}} >\mathrm{2}^{\mathrm{2048}} \\ $$$$\Rightarrow{the}\:{root}\:{of}\:{x}^{{x}^{{x}} } =\mathrm{2}^{\mathrm{2048}} \:{lies}\:{between} \\ $$$$\mathrm{4}\:{and}\:\mathrm{5}. \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
okay thanks sir
$${okay}\:{thanks}\:{sir} \\ $$
Commented by paul2222 last updated on 03/Jan/23
we can use newton raphson iteration
$$\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{use}}\:\boldsymbol{\mathrm{newton}}\:\boldsymbol{\mathrm{raphson}}\:\boldsymbol{\mathrm{iteration}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *