Menu Close

Solve-for-x-x-x-x-x-4-




Question Number 17989 by alex041103 last updated on 13/Jul/17
Solve for x  x^x^x^x^(....)    = 4
$${Solve}\:{for}\:{x} \\ $$$${x}^{{x}^{{x}^{{x}^{….} } } } =\:\mathrm{4} \\ $$
Commented by alex041103 last updated on 13/Jul/17
just for fun
$${just}\:{for}\:{fun} \\ $$
Commented by mrW1 last updated on 13/Jul/17
x^4 =4  x=^4 (√4)=(√2)
$$\mathrm{x}^{\mathrm{4}} =\mathrm{4} \\ $$$$\mathrm{x}=\:^{\mathrm{4}} \sqrt{\mathrm{4}}=\sqrt{\mathrm{2}} \\ $$
Commented by alex041103 last updated on 13/Jul/17
good
$${good} \\ $$
Commented by mrW1 last updated on 13/Jul/17
((√2))^(((√2))^(((√2))^((.....)) ) ) =?
$$\left(\sqrt{\mathrm{2}}\right)^{\left(\sqrt{\mathrm{2}}\right)^{\left(\sqrt{\mathrm{2}}\right)^{\left(…..\right)} } } =? \\ $$
Commented by mrW1 last updated on 13/Jul/17
2^(k/2)  = k  ⇒k=2 or 4  i.e.  ((√2))^(((√2))^(((√2))^((...)) ) )  = 2 or 4  but how can it be two different values?
$$\mathrm{2}^{\frac{{k}}{\mathrm{2}}} \:=\:{k} \\ $$$$\Rightarrow\mathrm{k}=\mathrm{2}\:\mathrm{or}\:\mathrm{4} \\ $$$$\mathrm{i}.\mathrm{e}. \\ $$$$\left(\sqrt{\mathrm{2}}\right)^{\left(\sqrt{\mathrm{2}}\right)^{\left(\sqrt{\mathrm{2}}\right)^{\left(…\right)} } } \:=\:\mathrm{2}\:\mathrm{or}\:\mathrm{4} \\ $$$$\mathrm{but}\:\mathrm{how}\:\mathrm{can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{two}\:\mathrm{different}\:\mathrm{values}? \\ $$
Commented by alex041103 last updated on 13/Jul/17
also −(√2) ia solution  (−(√2))^4 =(−1)^4 ((√2))^4 =4
$${also}\:−\sqrt{\mathrm{2}}\:{ia}\:{solution} \\ $$$$\left(−\sqrt{\mathrm{2}}\right)^{\mathrm{4}} =\left(−\mathrm{1}\right)^{\mathrm{4}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{4}} =\mathrm{4} \\ $$
Commented by prakash jain last updated on 13/Jul/17
x^x^x^(⋰∞)   =4  (√2) is not a valid solution.
$${x}^{{x}^{{x}^{\iddots\infty} } } =\mathrm{4} \\ $$$$\sqrt{\mathrm{2}}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{valid}\:\mathrm{solution}. \\ $$
Commented by alex041103 last updated on 13/Jul/17
True
$${True} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *