Menu Close

solve-for-y-if-2y-2-y-2-y-3-4y-9-




Question Number 187963 by Humble last updated on 24/Feb/23
solve for y  if  2y+2^y^2  +y^3 +4y=9
solveforyif2y+2y2+y3+4y=9
Answered by a.lgnaoui last updated on 24/Feb/23
6y+2^y^2  +y^3 =9  y(y^2 +6)+2^y^2  =9  y^2 +6+(2^y^2  /y)=(9/y)  y^2 +6=(1/y)(9−2^y^2  )⇒  (y^2 +6)^2 =(1/y^2 )(9−2^y^2  )^2   z=y^2      (z+6+((9−2^z )/z))(z+6−((9−2^z )/z))=0  ⇒  (z+3)^2 −2^z     =0      (1)  z^2 +6z−9+2^z =0      (2)  (1)+(2)⇒  (z+3)^2 +z^2 +6z−9=0  2z(z+6)=0          { (((z+3)^2                  =2^z )),(((z+3)^2 −18+2^z =0)) :}      (suite)    (z+3)^2 =2^z     zlog2=2log(z+3)  [(z+3) −3]log2 =log(z+3)  z+3=t  (t−3)log2=logt  tlog2−logt=3log2  log((2^t /t) )=log(2^3 )        (2^t /t)=2^3          (2^(y^2 +3) /(y^2 +3))=2^3 =2^3 (2^y^2  /(y^2 +3))      (2^y^2  /(y^2 +3))=1⇒2^y^2  =y^2 +3           Solution={−1;+1}
6y+2y2+y3=9y(y2+6)+2y2=9y2+6+2y2y=9yy2+6=1y(92y2)(y2+6)2=1y2(92y2)2z=y2(z+6+92zz)(z+692zz)=0(z+3)22z=0(1)z2+6z9+2z=0(2)(1)+(2)(z+3)2+z2+6z9=02z(z+6)=0{(z+3)2=2z(z+3)218+2z=0(suite)(z+3)2=2zzlog2=2log(z+3)[(z+3)3]log2=log(z+3)z+3=t(t3)log2=logttlog2logt=3log2log(2tt)=log(23)2tt=232y2+3y2+3=23=232y2y2+32y2y2+3=12y2=y2+3Solution={1;+1}
Commented by Humble last updated on 25/Feb/23
Great! Thanks alot
Great!Thanksalot
Commented by mr W last updated on 25/Feb/23
wrong!  y=−1 doesn′t satisfy the equation!  6(−1)+2^((−1)^2 ) +(−1)^3 =−5≠9
wrong!y=1doesntsatisfytheequation!6(1)+2(1)2+(1)3=59

Leave a Reply

Your email address will not be published. Required fields are marked *