Menu Close

solve-for-z-C-a-bi-z-b-ai-




Question Number 110246 by Her_Majesty last updated on 28/Aug/20
solve for z∈C: (a+bi)^z =b+ai
solveforzC:(a+bi)z=b+ai
Answered by mr W last updated on 28/Aug/20
θ=tan^(−1) (b/a)  zln (a+bi)=ln (b+ai)  z(ln (√(a^2 +b^2 ))+iθ)=ln (√(a^2 +b^2 ))+i((π/2)−θ)  z=((ln (√(a^2 +b^2 ))+i((π/2)−θ))/(ln (√(a^2 +b^2 ))+iθ))  z=(([ln (√(a^2 +b^2 ))+i((π/2)−θ)][ln (√(a^2 +b^2 ))+iθ])/(ln^2  (√(a^2 +b^2 ))+θ^2 ))  z=((ln^2  (√(a^2 +b^2 ))+((π/2)−θ)θ+(π/2)ln (√(a^2 +b^2 ))i)/(ln^2  (√(a^2 +b^2 ))+θ^2 ))
θ=tan1bazln(a+bi)=ln(b+ai)z(lna2+b2+iθ)=lna2+b2+i(π2θ)z=lna2+b2+i(π2θ)lna2+b2+iθz=[lna2+b2+i(π2θ)][lna2+b2+iθ]ln2a2+b2+θ2z=ln2a2+b2+(π2θ)θ+π2lna2+b2iln2a2+b2+θ2
Commented by Her_Majesty last updated on 28/Aug/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *