Menu Close

solve-for-z-in-the-form-x-iy-if-tanz-0-5-




Question Number 50849 by peter frank last updated on 21/Dec/18
solve for z  in the form  x+iy   if tanz=0.5
solveforzintheformx+iyiftanz=0.5
Answered by ajfour last updated on 21/Dec/18
e^(iz)  = cos z+isin z  e^(−iz)  = cos z−isin z  tan z= ((e^(iz) −e^(−iz) )/(i(e^(iz) +e^(−iz) )))   let  e^(iz)  = e^(−y+ix)  = e^(−y) (cos x+isin x)  ⇒   e^(−iz)  = e^(y−ix) = e^y (cos x−isin x)  ⇒ tan z = (((e^(−y) −e^y )cos x+i(e^(−y) +e^y )sin x)/(i[(e^(−y) +e^y )cos x+i(e^(−y) −e^y )sin x]))  let  e^(−y) +e^y  = u  ,  e^(−y) −e^y  = v  tan z = (((−ivcos x+usin x)(ucos x−ivsin x))/(u^2 cos^2 x+v^2 sin^2 x))   tan z = ((−iuv+(u^2 −v^2 )sin 2x)/(2(u^2 cos^2 x+v^2 sin^2 x)))  if  tan z = (1/2) , ⇒      uv = 0   or   e^(−2y) =e^(2y)      ⇒     y = 0      ⇒   u = 2 ,  v = 0   (((u^2 −v^2 )sin 2x)/(2(u^2 cos^2 x+v^2 sin^2 x))) = (1/2)  ⇒    tan x = (1/2)      ⇒   z = x = tan^(−1) (1/2)+nπ    .
eiz=cosz+isinzeiz=coszisinztanz=eizeizi(eiz+eiz)leteiz=ey+ix=ey(cosx+isinx)eiz=eyix=ey(cosxisinx)tanz=(eyey)cosx+i(ey+ey)sinxi[(ey+ey)cosx+i(eyey)sinx]letey+ey=u,eyey=vtanz=(ivcosx+usinx)(ucosxivsinx)u2cos2x+v2sin2xtanz=iuv+(u2v2)sin2x2(u2cos2x+v2sin2x)iftanz=12,uv=0ore2y=e2yy=0u=2,v=0(u2v2)sin2x2(u2cos2x+v2sin2x)=12tanx=12z=x=tan112+nπ.
Commented by peter frank last updated on 21/Dec/18
ans [  z=((πn)/2)+26.56+0.00000119i]
ans[z=πn2+26.56+0.00000119i]
Commented by MJS last updated on 21/Dec/18
sorry but this is wrong. possibly the calculator  approximates in a crazy way.  tan (a+bi) =(1/2)  has only real solutions ⇒ b=0
sorrybutthisiswrong.possiblythecalculatorapproximatesinacrazyway.tan(a+bi)=12hasonlyrealsolutionsb=0
Commented by peter frank last updated on 22/Dec/18
thank you both sirs
thankyoubothsirs
Answered by MJS last updated on 21/Dec/18
tan (x+iy) =(1/2);  ((x),(y) )∈R^2   x+iy=nπ+arctan (1/2) ; n∈Z  ⇒ y=0; x=nπ+arctan (1/2); n∈Z
tan(x+iy)=12;(xy)R2x+iy=nπ+arctan12;nZy=0;x=nπ+arctan12;nZ
Answered by peter frank last updated on 21/Dec/18
 tanh (iz)=itanz  (1/2)=((tanh (iz))/i)  (1/2)=((e^(iz) −e^(−iz) )/(i(e^(iz) +e^(−iz) )))  multiply by e^(iz)  and simplify  e^(2iz) =(3/5)+((4i)/5)  z=x+iy  e^(2ix) .e^(−2y) =(3/5)+((4i)/5)  from Eurel′s form of   complex no  e^(2xi) =cos 2x+isin 2x  e^(−2y) (cos 2x+isin 2x)=(3/4)+((4i)/5)  compare real and Immarginary  e^(−2y) cos 2x=(3/5)....(i)  e^(−2y) sin  2x=(4/5)....(ii)  divide ii by i  tan2x=(4/3)  tan2x=tan (53.13010235)≈tan 53.13  2x=πn+53.13^°   x=((πn)/2)+26.565  n=0,1,2,3  ....  from  e^(−2y) cos 2x=(3/5)....(i)  e^(−2y) =((0.6)/(cos 2x))  −2y=ln(((0.6)/(cos 2x)))  y=(1/2)ln(((0.6)/(cos 2x)))  z=x+iy  z=((πn)/2)+26.565−(1/2)ln(((0.6)/(cos 2x)))  ......
tanh(iz)=itanz12=tanh(iz)i12=eizeizi(eiz+eiz)multiplybyeizandsimplifye2iz=35+4i5z=x+iye2ix.e2y=35+4i5fromEurelsformofcomplexnoe2xi=cos2x+isin2xe2y(cos2x+isin2x)=34+4i5comparerealandImmarginarye2ycos2x=35.(i)e2ysin2x=45.(ii)divideiibyitan2x=43tan2x=tan(53.13010235)tan53.132x=πn+53.13°x=πn2+26.565n=0,1,2,3.frome2ycos2x=35.(i)e2y=0.6cos2x2y=ln(0.6cos2x)y=12ln(0.6cos2x)z=x+iyz=πn2+26.56512ln(0.6cos2x)

Leave a Reply

Your email address will not be published. Required fields are marked *