Menu Close

solve-I-0-pi-r-R-cos-sin-R-2-r-2-2Rr-cos-3-2-d-for-r-lt-R-and-r-gt-R-respectively-




Question Number 33823 by 33 last updated on 25/Apr/18
  solve :    I = ∫_0 ^π  (((r−R cosθ) sin θ )/((R^(2 ) + r^2  − 2Rr cos θ)^(3/2) )) dθ  for   r < R  and r > R  respectively.
solve:I=π0(rRcosθ)sinθ(R2+r22Rrcosθ)3/2dθforr<Randr>Rrespectively.
Answered by MJS last updated on 26/Apr/18
∫u′v=uv−∫uv′  u′=((sin θ)/((r^2 +R^2 −2rRcos θ)^(3/2) )); v=r−Rcos θ  u=−(1/(rR(r^2 +R^2 −2rRcos θ)^(1/2) )); v′=Rsin θ        [((∫((sin θ)/((r^2 +R^2 −2rRcos θ)^(3/2) ))dθ=)),((     [t=r^2 +R^2 −2rRcos θ → dx=(dt/(2rRsin θ))])),((=(1/(2rR))∫(1/t^(3/2) )dt=−(1/(rRt^(1/2) )))) ]  uv=−((r−Rcos θ)/(rR(r^2 +R^2 −2rRcos θ)^(1/2) ))  −∫uv′=∫((sin θ)/(r(r^2 +R^2 −2rRcos θ)^(1/2) ))=       [with the same substitution as above]  =(((r^2 +R^2 −2rRcos θ)^(1/2) )/(r^2 R))  ∫(((r−Rcos θ)sin θ)/((r^2 +R^2 −2rRcos θ)^(3/2) ))=  =−((r−Rcos θ)/(rR(r^2 +R^2 −2rRcos θ)^(1/2) ))+(((r^2 +R^2 −2rRcos θ)^(1/2) )/(r^2 R))+C=  =((R−rcos θ)/(r^2 (√(r^2 +R^2 −2rRcos θ))))+C=F(θ)  F(π)−F(0)=((R+r)/(r^2 ∣R+r∣))−((R−r)/(r^2 ∣R−r∣))  r, R>0  r<R ⇒ F(π)−F(0)=0  r>R ⇒ F(π)−F(0)=(2/r^2 )
uv=uvuvu=sinθ(r2+R22rRcosθ)32;v=rRcosθu=1rR(r2+R22rRcosθ)12;v=Rsinθ[sinθ(r2+R22rRcosθ)32dθ=[t=r2+R22rRcosθdx=dt2rRsinθ]=12rR1t32dt=1rRt12]uv=rRcosθrR(r2+R22rRcosθ)12uv=sinθr(r2+R22rRcosθ)12=[withthesamesubstitutionasabove]=(r2+R22rRcosθ)12r2R(rRcosθ)sinθ(r2+R22rRcosθ)32==rRcosθrR(r2+R22rRcosθ)12+(r2+R22rRcosθ)12r2R+C==Rrcosθr2r2+R22rRcosθ+C=F(θ)F(π)F(0)=R+rr2R+rRrr2Rrr,R>0r<RF(π)F(0)=0r>RF(π)F(0)=2r2

Leave a Reply

Your email address will not be published. Required fields are marked *