Menu Close

solve-in-R-3-x-1-y-3-y-1-z-4-z-1-x-5-




Question Number 184472 by mr W last updated on 07/Jan/23
solve in R^3    { ((x+(1/y)=3)),((y+(1/z)=4)),((z+(1/x)=5)) :}
$${solve}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$$\begin{cases}{{x}+\frac{\mathrm{1}}{{y}}=\mathrm{3}}\\{{y}+\frac{\mathrm{1}}{{z}}=\mathrm{4}}\\{{z}+\frac{\mathrm{1}}{{x}}=\mathrm{5}}\end{cases} \\ $$
Answered by liuxinnan last updated on 07/Jan/23
actually R^3 =R  z=5−(1/x)  (1/z)=(x/(5x−1))  y+(x/(5x−1))=4  y=4−(x/(5x−1))=((19x−4)/(5x−1))  x+((19x−4)/(5x−1))=3  5x^2 −x+19x−4=15x−3  5x^2 +3x−1=0  x=((−3±(√(29)))/(10))  y=(1/(3−x))=(1/(3+((3∓(√(29)))/(10))))=((10)/(33∓(√(29))))  z=5−(1/x)=5+((10)/(3∓(√(29))))=((25∓5(√(29)))/(3∓(√(29))))
$${actually}\:\mathbb{R}^{\mathrm{3}} =\mathbb{R} \\ $$$${z}=\mathrm{5}−\frac{\mathrm{1}}{{x}} \\ $$$$\frac{\mathrm{1}}{{z}}=\frac{{x}}{\mathrm{5}{x}−\mathrm{1}} \\ $$$${y}+\frac{{x}}{\mathrm{5}{x}−\mathrm{1}}=\mathrm{4} \\ $$$${y}=\mathrm{4}−\frac{{x}}{\mathrm{5}{x}−\mathrm{1}}=\frac{\mathrm{19}{x}−\mathrm{4}}{\mathrm{5}{x}−\mathrm{1}} \\ $$$${x}+\frac{\mathrm{19}{x}−\mathrm{4}}{\mathrm{5}{x}−\mathrm{1}}=\mathrm{3} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} −{x}+\mathrm{19}{x}−\mathrm{4}=\mathrm{15}{x}−\mathrm{3} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{3}\pm\sqrt{\mathrm{29}}}{\mathrm{10}} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{3}−{x}}=\frac{\mathrm{1}}{\mathrm{3}+\frac{\mathrm{3}\mp\sqrt{\mathrm{29}}}{\mathrm{10}}}=\frac{\mathrm{10}}{\mathrm{33}\mp\sqrt{\mathrm{29}}} \\ $$$${z}=\mathrm{5}−\frac{\mathrm{1}}{{x}}=\mathrm{5}+\frac{\mathrm{10}}{\mathrm{3}\mp\sqrt{\mathrm{29}}}=\frac{\mathrm{25}\mp\mathrm{5}\sqrt{\mathrm{29}}}{\mathrm{3}\mp\sqrt{\mathrm{29}}} \\ $$
Commented by mr W last updated on 07/Jan/23
please recheck!  x+((19x−4)/(5x−1))((5x−1)/(19x−4))=3
$${please}\:{recheck}! \\ $$$${x}+\cancel{\frac{\mathrm{19}{x}−\mathrm{4}}{\mathrm{5}{x}−\mathrm{1}}}\frac{\mathrm{5}{x}−\mathrm{1}}{\mathrm{19}{x}−\mathrm{4}}=\mathrm{3} \\ $$
Commented by liuxinnan last updated on 08/Jan/23
please recheck!  x+((19x−4)/(5x−1))((5x−1)/(19x−4))=3  I am sorry that
$${please}\:{recheck}! \\ $$$${x}+\cancel{\frac{\mathrm{19}{x}−\mathrm{4}}{\mathrm{5}{x}−\mathrm{1}}}\frac{\mathrm{5}{x}−\mathrm{1}}{\mathrm{19}{x}−\mathrm{4}}=\mathrm{3} \\ $$$${I}\:{am}\:{sorry}\:{that} \\ $$
Commented by mr W last updated on 08/Jan/23
no problem! this happens even in the   best families, as the Germans say.
$${no}\:{problem}!\:{this}\:{happens}\:{even}\:{in}\:{the}\: \\ $$$${best}\:{families},\:{as}\:{the}\:{Germans}\:{say}. \\ $$
Answered by SEKRET last updated on 07/Jan/23
 ×;+  { ((x+(1/y) =3)),((y+(1/z)=4)),((z+(1/x) = 5)) :}      x+y+z+(1/x)+(1/y)+(1/z)+xyz+(1/(xyz)) = 60     x+y+z+(1/x)+(1/y)+(1/z)=12    xyz=a      x=(a/(yz))    y=(a/(xz))    z= (a/(xy))       12+a+(1/a)=60             a^2 +1=48a      a_(1;2) =24∓5(√(23))      { (( (1/y)∙((a/z)+1)=3  →((z/(4z−1)))(((a+z)/z))=3)),(((1/z)∙((a/x)+1)=4 →((x/(5x−1)))∙(((a+x)/x))=4)),(((1/x) ((a/y)+1)=5→ ((y/(3y−1)))∙(((a+y)/y))=5)) :}       { ((a+z=12z−3→  z= ((a+3)/(11)))),((a+x=20x−4 →x= ((a+4)/(19)))),((a+y=15y−5 → y= ((a+5)/(14)))) :}     a_(1,2) =24±5(√(23))    {x;y;z}→{ ((28+5(√(23)))/(19))   ;  ((29+5(√(23)))/(14))  ; ((27+5(√(323)))/(11)) }  { x;y;z}→{((28−5(√(23)))/(19))  ; ((29−4(√(23)))/(14)) ; ((27−5(√(23)))/(11)) }
$$\:×;+\:\begin{cases}{\boldsymbol{\mathrm{x}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\:=\mathrm{3}}\\{\boldsymbol{\mathrm{y}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}=\mathrm{4}}\\{\boldsymbol{\mathrm{z}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\:=\:\mathrm{5}}\end{cases} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}+\boldsymbol{\mathrm{xyz}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{xyz}}}\:=\:\mathrm{60} \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}=\mathrm{12} \\ $$$$\:\:\boldsymbol{\mathrm{xyz}}=\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\boldsymbol{\mathrm{x}}=\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{yz}}}\:\:\:\:\boldsymbol{\mathrm{y}}=\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{xz}}}\:\:\:\:\boldsymbol{\mathrm{z}}=\:\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{xy}}} \\ $$$$\:\:\:\:\:\mathrm{12}+\boldsymbol{\mathrm{a}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}}=\mathrm{60} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\mathrm{1}=\mathrm{48}\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1};\mathrm{2}} =\mathrm{24}\mp\mathrm{5}\sqrt{\mathrm{23}} \\ $$$$\:\:\:\begin{cases}{\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\centerdot\left(\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{z}}}+\mathrm{1}\right)=\mathrm{3}\:\:\rightarrow\left(\frac{\boldsymbol{\mathrm{z}}}{\mathrm{4}\boldsymbol{\mathrm{z}}−\mathrm{1}}\right)\left(\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{z}}}{\boldsymbol{\mathrm{z}}}\right)=\mathrm{3}}\\{\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}\centerdot\left(\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{x}}}+\mathrm{1}\right)=\mathrm{4}\:\rightarrow\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{5}\boldsymbol{\mathrm{x}}−\mathrm{1}}\right)\centerdot\left(\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}}\right)=\mathrm{4}}\\{\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\:\left(\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{y}}}+\mathrm{1}\right)=\mathrm{5}\rightarrow\:\left(\frac{\boldsymbol{\mathrm{y}}}{\mathrm{3}\boldsymbol{\mathrm{y}}−\mathrm{1}}\right)\centerdot\left(\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{y}}}\right)=\mathrm{5}}\end{cases} \\ $$$$\:\:\:\:\begin{cases}{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{z}}=\mathrm{12}\boldsymbol{\mathrm{z}}−\mathrm{3}\rightarrow\:\:\boldsymbol{\mathrm{z}}=\:\frac{\boldsymbol{\mathrm{a}}+\mathrm{3}}{\mathrm{11}}}\\{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{x}}=\mathrm{20}\boldsymbol{\mathrm{x}}−\mathrm{4}\:\rightarrow\boldsymbol{\mathrm{x}}=\:\frac{\boldsymbol{\mathrm{a}}+\mathrm{4}}{\mathrm{19}}}\\{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{y}}=\mathrm{15}\boldsymbol{\mathrm{y}}−\mathrm{5}\:\rightarrow\:\boldsymbol{\mathrm{y}}=\:\frac{\boldsymbol{\mathrm{a}}+\mathrm{5}}{\mathrm{14}}}\end{cases} \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1},\mathrm{2}} =\mathrm{24}\pm\mathrm{5}\sqrt{\mathrm{23}} \\ $$$$\:\:\left\{\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}};\boldsymbol{\mathrm{z}}\right\}\rightarrow\left\{\:\frac{\mathrm{28}+\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{19}}\:\:\:;\:\:\frac{\mathrm{29}+\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{14}}\:\:;\:\frac{\mathrm{27}+\mathrm{5}\sqrt{\mathrm{323}}}{\mathrm{11}}\:\right\} \\ $$$$\left\{\:\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}};\boldsymbol{\mathrm{z}}\right\}\rightarrow\left\{\frac{\mathrm{28}−\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{19}}\:\:;\:\frac{\mathrm{29}−\mathrm{4}\sqrt{\mathrm{23}}}{\mathrm{14}}\:;\:\frac{\mathrm{27}−\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{11}}\:\right\} \\ $$
Answered by mr W last updated on 07/Jan/23
general case:   { ((x+(1/y)=a   ...(i))),((y+(1/z)=b   ...(ii))),((z+(1/x)=c   ...(iii))) :}  x+(1/y)+y+(1/z)+z+(1/x)=a+b+c  (x+(1/y))(y+(1/z))(z+(1/x))=abc  xyz+(1/(xyz))+x+(1/y)+y+(1/z)+z+(1/x)=abc  xyz+(1/(xyz))+a+b+c=abc  with λ=((abc−(a+b+c))/2)  (xyz)^2 −2λ(xyz)+1=0  ⇒xyz=λ±(√(λ^2 −1))    z=c−(1/x)=((cx−1)/x)  y=b−(1/z)=b−(x/(cx−1))=(((bc−1)x−b)/(cx−1))  xyz=x×(((bc−1)x−b)/(cx−1))×((cx−1)/x)=(bc−1)x−b  ⇒x=((xyz+b)/(bc−1))  ⇒x=((λ±(√(λ^2 −1))+b)/(bc−1))  similarly  ⇒y=((λ±(√(λ^2 −1))+c)/(ca−1))  ⇒z=((λ±(√(λ^2 −1))+a)/(ab−1))  such that a solution exists, λ≥1  i.e. abc≥a+b+c+2    in current case:  a=3, b=4, c=5  λ=((3×4×5−(3+4+5))/2)=24  xyz=λ±(√(λ^2 −1))=24±5(√(23))  x=((24±5(√(23))+4)/(4×5−1))=((28±5(√(23)))/(19))  y=((24±5(√(23))+5)/(5×3−1))=((29±5(√(23)))/(14))  z=((24±5(√(23))+3)/(3×4−1))=((27±5(√(23)))/(11))
$${general}\:{case}: \\ $$$$\begin{cases}{{x}+\frac{\mathrm{1}}{{y}}={a}\:\:\:…\left({i}\right)}\\{{y}+\frac{\mathrm{1}}{{z}}={b}\:\:\:…\left({ii}\right)}\\{{z}+\frac{\mathrm{1}}{{x}}={c}\:\:\:…\left({iii}\right)}\end{cases} \\ $$$${x}+\frac{\mathrm{1}}{{y}}+{y}+\frac{\mathrm{1}}{{z}}+{z}+\frac{\mathrm{1}}{{x}}={a}+{b}+{c} \\ $$$$\left({x}+\frac{\mathrm{1}}{{y}}\right)\left({y}+\frac{\mathrm{1}}{{z}}\right)\left({z}+\frac{\mathrm{1}}{{x}}\right)={abc} \\ $$$${xyz}+\frac{\mathrm{1}}{{xyz}}+{x}+\frac{\mathrm{1}}{{y}}+{y}+\frac{\mathrm{1}}{{z}}+{z}+\frac{\mathrm{1}}{{x}}={abc} \\ $$$${xyz}+\frac{\mathrm{1}}{{xyz}}+{a}+{b}+{c}={abc} \\ $$$${with}\:\lambda=\frac{{abc}−\left({a}+{b}+{c}\right)}{\mathrm{2}} \\ $$$$\left({xyz}\right)^{\mathrm{2}} −\mathrm{2}\lambda\left({xyz}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{xyz}=\lambda\pm\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}} \\ $$$$ \\ $$$${z}={c}−\frac{\mathrm{1}}{{x}}=\frac{{cx}−\mathrm{1}}{{x}} \\ $$$${y}={b}−\frac{\mathrm{1}}{{z}}={b}−\frac{{x}}{{cx}−\mathrm{1}}=\frac{\left({bc}−\mathrm{1}\right){x}−{b}}{{cx}−\mathrm{1}} \\ $$$${xyz}={x}×\frac{\left({bc}−\mathrm{1}\right){x}−{b}}{{cx}−\mathrm{1}}×\frac{{cx}−\mathrm{1}}{{x}}=\left({bc}−\mathrm{1}\right){x}−{b} \\ $$$$\Rightarrow{x}=\frac{{xyz}+{b}}{{bc}−\mathrm{1}} \\ $$$$\Rightarrow{x}=\frac{\lambda\pm\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}+{b}}{{bc}−\mathrm{1}} \\ $$$${similarly} \\ $$$$\Rightarrow{y}=\frac{\lambda\pm\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}+{c}}{{ca}−\mathrm{1}} \\ $$$$\Rightarrow{z}=\frac{\lambda\pm\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}+{a}}{{ab}−\mathrm{1}} \\ $$$${such}\:{that}\:{a}\:{solution}\:{exists},\:\lambda\geqslant\mathrm{1} \\ $$$${i}.{e}.\:{abc}\geqslant{a}+{b}+{c}+\mathrm{2} \\ $$$$ \\ $$$${in}\:{current}\:{case}: \\ $$$${a}=\mathrm{3},\:{b}=\mathrm{4},\:{c}=\mathrm{5} \\ $$$$\lambda=\frac{\mathrm{3}×\mathrm{4}×\mathrm{5}−\left(\mathrm{3}+\mathrm{4}+\mathrm{5}\right)}{\mathrm{2}}=\mathrm{24} \\ $$$${xyz}=\lambda\pm\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}=\mathrm{24}\pm\mathrm{5}\sqrt{\mathrm{23}} \\ $$$${x}=\frac{\mathrm{24}\pm\mathrm{5}\sqrt{\mathrm{23}}+\mathrm{4}}{\mathrm{4}×\mathrm{5}−\mathrm{1}}=\frac{\mathrm{28}\pm\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{19}} \\ $$$${y}=\frac{\mathrm{24}\pm\mathrm{5}\sqrt{\mathrm{23}}+\mathrm{5}}{\mathrm{5}×\mathrm{3}−\mathrm{1}}=\frac{\mathrm{29}\pm\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{14}} \\ $$$${z}=\frac{\mathrm{24}\pm\mathrm{5}\sqrt{\mathrm{23}}+\mathrm{3}}{\mathrm{3}×\mathrm{4}−\mathrm{1}}=\frac{\mathrm{27}\pm\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{11}} \\ $$
Commented by manxsol last updated on 07/Jan/23
to make it more didactic   it would be good like this.  Great journal Sir.W  xyz+(1/(xyz))=abc−(a+b+c)  (xyz).((1/(xyz)))=1    (xyz)^2 −[abc−(a+b+c]xyz+1  xyz=((abc−(a+b+c))/2) ±((√([abc−(a+b+c)]^2 −4))/2)  with  λ=((abc−(a+b+c))/2)  (xyz)^2 −2λ(xyz)+1
$${to}\:{make}\:{it}\:{more}\:{didactic} \\ $$$$\:{it}\:{would}\:{be}\:{good}\:{like}\:{this}. \\ $$$${Great}\:{journal}\:{Sir}.{W} \\ $$$${xyz}+\frac{\mathrm{1}}{{xyz}}={abc}−\left({a}+{b}+{c}\right) \\ $$$$\left({xyz}\right).\left(\frac{\mathrm{1}}{{xyz}}\right)=\mathrm{1} \\ $$$$ \\ $$$$\left({xyz}\right)^{\mathrm{2}} −\left[{abc}−\left({a}+{b}+{c}\right]{xyz}+\mathrm{1}\right. \\ $$$${xyz}=\frac{{abc}−\left({a}+{b}+{c}\right)}{\mathrm{2}}\:\pm\frac{\sqrt{\left[{abc}−\left({a}+{b}+{c}\right)\right]^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$$${with}\:\:\lambda=\frac{{abc}−\left({a}+{b}+{c}\right)}{\mathrm{2}} \\ $$$$\left({xyz}\right)^{\mathrm{2}} −\mathrm{2}\lambda\left({xyz}\right)+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$
Answered by ajfour last updated on 08/Jan/23
let  4−y=t=(1/z)  Now     x((1/x))=1   ⇒      (3−(1/(4−t)))(5−(1/t))=1  ⇒  14t(4−t)+1=5t+3(4−t)  ⇒  14t^2 −54t+11=0  t=((27)/(14))±(√((((27)/(14)))^2 −((154)/((14)^2 ))))     =((27±5(√(23)))/(14))  y=4−t=((29±5(√(23)))/(14))
$${let}\:\:\mathrm{4}−{y}={t}=\frac{\mathrm{1}}{{z}} \\ $$$${Now}\:\:\:\:\:{x}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}\:\:\:\Rightarrow \\ $$$$\:\:\:\:\left(\mathrm{3}−\frac{\mathrm{1}}{\mathrm{4}−{t}}\right)\left(\mathrm{5}−\frac{\mathrm{1}}{{t}}\right)=\mathrm{1} \\ $$$$\Rightarrow\:\:\mathrm{14}{t}\left(\mathrm{4}−{t}\right)+\mathrm{1}=\mathrm{5}{t}+\mathrm{3}\left(\mathrm{4}−{t}\right) \\ $$$$\Rightarrow\:\:\mathrm{14}{t}^{\mathrm{2}} −\mathrm{54}{t}+\mathrm{11}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{27}}{\mathrm{14}}\pm\sqrt{\left(\frac{\mathrm{27}}{\mathrm{14}}\right)^{\mathrm{2}} −\frac{\mathrm{154}}{\left(\mathrm{14}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:=\frac{\mathrm{27}\pm\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{14}} \\ $$$${y}=\mathrm{4}−{t}=\frac{\mathrm{29}\pm\mathrm{5}\sqrt{\mathrm{23}}}{\mathrm{14}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *