Menu Close

Solve-in-R-3-x-2-2xy-y-2-4z-2-0-3x-2y-z-3-x-2-y-2-3z-2-4xy-yz-x-2y-3z-7-0-




Question Number 107065 by mathocean1 last updated on 08/Aug/20
Solve in R^3    { ((x^2 +2xy+y^2 −4z^2 =0)),((3x−2y+z=3)) :}      x^2 +y^2 +3z^2 −4xy+yz+x+2y−3z+7=0
$${Solve}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$$\begin{cases}{{x}^{\mathrm{2}} +\mathrm{2}{xy}+{y}^{\mathrm{2}} −\mathrm{4}{z}^{\mathrm{2}} =\mathrm{0}}\\{\mathrm{3}{x}−\mathrm{2}{y}+{z}=\mathrm{3}}\end{cases} \\ $$$$\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{z}^{\mathrm{2}} −\mathrm{4}{xy}+{yz}+{x}+\mathrm{2}{y}−\mathrm{3}{z}+\mathrm{7}=\mathrm{0} \\ $$
Answered by Her_Majesty last updated on 09/Aug/20
II ⇒ z=−3x+2y+3  I+III ⇒ y=((7x^2 −24x+8)/(7x−11))  ⇒ z=((−7x^2 +6x−17)/(7x−11))    ⇒  I or III  (((23x+26)(28x^2 −47x+42))/((7x−11)^2 ))=0  ⇒  x=−((26)/(23)), y=−((268)/(115)), z=((199)/(115))
$${II}\:\Rightarrow\:{z}=−\mathrm{3}{x}+\mathrm{2}{y}+\mathrm{3} \\ $$$${I}+{III}\:\Rightarrow\:{y}=\frac{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{8}}{\mathrm{7}{x}−\mathrm{11}} \\ $$$$\Rightarrow\:{z}=\frac{−\mathrm{7}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{17}}{\mathrm{7}{x}−\mathrm{11}} \\ $$$$ \\ $$$$\Rightarrow \\ $$$${I}\:{or}\:{III} \\ $$$$\frac{\left(\mathrm{23}{x}+\mathrm{26}\right)\left(\mathrm{28}{x}^{\mathrm{2}} −\mathrm{47}{x}+\mathrm{42}\right)}{\left(\mathrm{7}{x}−\mathrm{11}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}=−\frac{\mathrm{26}}{\mathrm{23}},\:{y}=−\frac{\mathrm{268}}{\mathrm{115}},\:{z}=\frac{\mathrm{199}}{\mathrm{115}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *