Question Number 91872 by M±th+et+s last updated on 03/May/20
$${solve}\:{in}\:\mathbb{R} \\ $$$$\mathrm{8}\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}+\mathrm{5}\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}=\mathrm{7x}^{\mathrm{2}} +\mathrm{12} \\ $$
Commented by MJS last updated on 03/May/20
$$\mathrm{you}\:\mathrm{can}\:\begin{cases}{\left(\mathrm{square}+\mathrm{transform}\right)×\mathrm{2}\:\mathrm{and}\:\mathrm{then}}\\{\:\:\:\:\:\mathrm{approximate}\:\mathrm{the}\:\mathrm{8}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{polynome}}\\{\mathrm{or}\:\mathrm{approximate}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}}\end{cases} \\ $$$$\mathrm{I}\:\mathrm{get} \\ $$$${x}_{\mathrm{1}} \approx−.\mathrm{367792} \\ $$$${x}_{\mathrm{2}} \approx.\mathrm{440570} \\ $$$${x}_{\mathrm{3}} \approx\mathrm{1}.\mathrm{16117} \\ $$
Commented by M±th+et+s last updated on 03/May/20
$${thanks}\:{sir}\:{but}\:{can}\:{you}\:{show}\:{the}\:{steps} \\ $$$${of}\:{the}\:{solution} \\ $$
Commented by M±th+et+s last updated on 03/May/20
$${and}\:{the}\:{values}\:{are}\:{correct} \\ $$