Menu Close

solve-in-R-arcsin-x-arcsin-1-x-2-pi-2-




Question Number 168084 by mathocean1 last updated on 02/Apr/22
solve in R  arcsin(x)+arcsin((√(1−x^2 )))=(π/2)
solveinRarcsin(x)+arcsin(1x2)=π2
Commented by MJS_new last updated on 02/Apr/22
x≥0
x0
Commented by mathocean1 last updated on 03/Apr/22
but for x=2 the equation doesn′t   have sens.
butforx=2theequationdoesnthavesens.
Commented by MJS_new last updated on 03/Apr/22
arcsin a +arcsin b =  =arcsin (a(√(1−b^2 ))+b(√(1−a^2 )))  with a=x∧b=(√(1+x^2 )) we get  arcsin x +arcsin (√(1−x^2 )) =  =arcsin (x∣x∣−x^2 +1)  with x<0 we get arcsin (1−2x^2 )  with x≥0 we get arcsin 1 =(π/2)  doesn′t matter if arcsin x and arcsin (√(1−x^2 ))  are not real, the imaginary part vanishes  arcsin 2 ≈(π/2)−1.31696i  arcsin (√(1−2^2 )) ≈ 1.31696i
arcsina+arcsinb==arcsin(a1b2+b1a2)witha=xb=1+x2wegetarcsinx+arcsin1x2==arcsin(xxx2+1)withx<0wegetarcsin(12x2)withx0wegetarcsin1=π2doesntmatterifarcsinxandarcsin1x2arenotreal,theimaginarypartvanishesarcsin2π21.31696iarcsin1221.31696i
Answered by Tyller last updated on 04/Apr/22
sen(arcsenx+arcsen((√(1−x^2 )))=1  x×(√(1−1+x^2 ))+(√(1−x^2 ))×(√(1−x^2 ))=1  x∣x∣+∣1−x^2 ∣=1  para x≥0 ∩ x∈[−1,1]⇒x∈[0,1]  x×x+1−x^2 =1⇔x∈[0,1]  para x<0 e (1−x^2 )≥0⇒x∈[−1,0)  −x^2 +1−x^2 =1⇒x=0⇈  p/x≥0 e (1−x^2 )<0⇒x∈(−∝.−1)u(1.+∝)  x^2 +x^2 −1=1⇒x=±1∉x  sg=[0.1]
sen(arcsenx+arcsen(1x2)=1x×11+x2+1x2×1x2=1xx+1x2∣=1parax0x[1,1]x[0,1]x×x+1x2=1x[0,1]parax<0e(1x2)0x[1,0)x2+1x2=1x=0p/x0e(1x2)<0x(.1)u(1.+)x2+x21=1x=±1xsg=[0.1]
Answered by Mathspace last updated on 04/Apr/22
let ϕ(x)=arcsinx+arcsin(√(1−x^2 ))  ϕ^′ (x)=(1/( (√(1−x^2 ))))−(x/( (√(1−x^2 ))))×(1/( (√(1−(1−x^2 )))))  =(1/( (√(1−x^2 ))))(1−(x/( (√x^2 ))))  =(1/( (√(1−x^2 ))))(1−(x/(∣x∣)))  so if x∈]0,1[  we get ϕ^′ (x)=0 ⇒
letφ(x)=arcsinx+arcsin1x2φ(x)=11x2x1x2×11(1x2)=11x2(1xx2)=11x2(1xx)soifx]0,1[wegetφ(x)=0
Answered by Mathspace last updated on 04/Apr/22
⇒ϕ(x)=C  x=0 ⇒o+arcsin(1)=C ⇒  C=(π/2) ⇒set of solution is [0,1]
φ(x)=Cx=0o+arcsin(1)=CC=π2setofsolutionis[0,1]
Commented by MJS_new last updated on 04/Apr/22
nice. but ϕ′(x) is zero for x∈(0; +∞)  ⇒ ϕ(x)=C∈R for x≥0.
nice.butφ(x)iszeroforx(0;+)φ(x)=CRforx0.

Leave a Reply

Your email address will not be published. Required fields are marked *