Question Number 86426 by M±th+et£s last updated on 28/Mar/20
$${solve}\:{in}\:{R} \\ $$$${x}^{\mathrm{3}} −\mathrm{5}=\left[{x}\right] \\ $$
Answered by mr W last updated on 28/Mar/20
$${let}\:{x}={n}+\delta \\ $$$$\left({n}+\delta\right)^{\mathrm{3}} −\mathrm{5}=\left[{x}\right]={n} \\ $$$$\left({n}+\delta\right)^{\mathrm{3}} −{n}=\mathrm{5} \\ $$$${with}\:{n}=\mathrm{0},\:{LHS}<\mathrm{1} \\ $$$${with}\:{n}=\mathrm{2},\:{LHS}\geqslant\mathrm{6} \\ $$$$\Rightarrow{n}=\mathrm{1} \\ $$$$\left(\mathrm{1}+\delta\right)^{\mathrm{3}} −\mathrm{1}=\mathrm{5} \\ $$$$\left(\mathrm{1}+\delta\right)^{\mathrm{3}} =\mathrm{6} \\ $$$$\delta=\sqrt[{\mathrm{3}}]{\mathrm{6}}−\mathrm{1} \\ $$$$\Rightarrow{x}={n}+\delta=\sqrt[{\mathrm{3}}]{\mathrm{6}}\approx\mathrm{1}.\mathrm{81712} \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
$${god}\:{bless}\:{you}\:{sir} \\ $$
Answered by MJS last updated on 28/Mar/20
$${x}^{\mathrm{3}} =\mathrm{5}+\left[{x}\right] \\ $$$$−\mathrm{8}\leqslant{x}^{\mathrm{3}} <−\mathrm{1}\:\Rightarrow\:\mathrm{5}+\left[{x}\right]=\mathrm{3} \\ $$$$−\mathrm{1}\leqslant{x}^{\mathrm{3}} <\mathrm{0}\:\Rightarrow\:\mathrm{5}+\left[{x}\right]=\mathrm{4} \\ $$$$\mathrm{0}\leqslant{x}^{\mathrm{3}} <\mathrm{1}\:\Rightarrow\:\mathrm{5}+\left[{x}\right]=\mathrm{5} \\ $$$$\mathrm{1}\leqslant{x}^{\mathrm{3}} <\mathrm{8}\:\Rightarrow\:\mathrm{5}+\left[{x}\right]=\mathrm{6}\:\Rightarrow\:{x}^{\mathrm{3}} =\mathrm{6}\:\Leftrightarrow\:{x}=\sqrt[{\mathrm{3}}]{\mathrm{6}} \\ $$$$\mathrm{8}\leqslant{x}^{\mathrm{3}} <\mathrm{27}\:\Rightarrow\:\mathrm{5}+\left[{x}\right]=\mathrm{7} \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
$${god}\:{bless}\:{you}\:{sir} \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
$${sir}\:{why}\:\:\:−\mathrm{8}\leqslant{x}<−\mathrm{1}\:\:\: \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
$${sorry}\:{x}^{\mathrm{3}} \\ $$
Commented by MJS last updated on 28/Mar/20
$$−\mathrm{8}\leqslant{x}^{\mathrm{3}} <−\mathrm{1}\:\Leftrightarrow\:−\mathrm{2}\leqslant{x}<−\mathrm{1}\:\Rightarrow\:\left[{x}\right]=−\mathrm{2} \\ $$$$\mathrm{generally} \\ $$$$\forall{a}\in\mathbb{Z}:\:{a}\leqslant{x}<{a}+\mathrm{1}\:\Rightarrow\:\left[{x}\right]={a} \\ $$$$\mathrm{and}\:{a}\leqslant{x}<{a}+\mathrm{1}\:\Leftrightarrow\:{a}^{\mathrm{3}} \leqslant{x}^{\mathrm{3}} <\left({a}+\mathrm{1}\right)^{\mathrm{3}} \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
$${thank}\:{you}\:{sir} \\ $$