Menu Close

solve-in-R-x-3-5-x-




Question Number 86426 by M±th+et£s last updated on 28/Mar/20
solve in R  x^3 −5=[x]
solveinRx35=[x]
Answered by mr W last updated on 28/Mar/20
let x=n+δ  (n+δ)^3 −5=[x]=n  (n+δ)^3 −n=5  with n=0, LHS<1  with n=2, LHS≥6  ⇒n=1  (1+δ)^3 −1=5  (1+δ)^3 =6  δ=(6)^(1/3) −1  ⇒x=n+δ=(6)^(1/3) ≈1.81712
letx=n+δ(n+δ)35=[x]=n(n+δ)3n=5withn=0,LHS<1withn=2,LHS6n=1(1+δ)31=5(1+δ)3=6δ=631x=n+δ=631.81712
Commented by M±th+et£s last updated on 28/Mar/20
god bless you sir
godblessyousir
Answered by MJS last updated on 28/Mar/20
x^3 =5+[x]  −8≤x^3 <−1 ⇒ 5+[x]=3  −1≤x^3 <0 ⇒ 5+[x]=4  0≤x^3 <1 ⇒ 5+[x]=5  1≤x^3 <8 ⇒ 5+[x]=6 ⇒ x^3 =6 ⇔ x=(6)^(1/3)   8≤x^3 <27 ⇒ 5+[x]=7
x3=5+[x]8x3<15+[x]=31x3<05+[x]=40x3<15+[x]=51x3<85+[x]=6x3=6x=638x3<275+[x]=7
Commented by M±th+et£s last updated on 28/Mar/20
god bless you sir
godblessyousir
Commented by M±th+et£s last updated on 28/Mar/20
sir why   −8≤x<−1
sirwhy8x<1
Commented by M±th+et£s last updated on 28/Mar/20
sorry x^3
sorryx3
Commented by MJS last updated on 28/Mar/20
−8≤x^3 <−1 ⇔ −2≤x<−1 ⇒ [x]=−2  generally  ∀a∈Z: a≤x<a+1 ⇒ [x]=a  and a≤x<a+1 ⇔ a^3 ≤x^3 <(a+1)^3
8x3<12x<1[x]=2generallyaZ:ax<a+1[x]=aandax<a+1a3x3<(a+1)3
Commented by M±th+et£s last updated on 28/Mar/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *