Menu Close

solve-in-Z-3-x-2y-3z-12-




Question Number 42304 by maxmathsup by imad last updated on 22/Aug/18
solve in Z^3     x+2y +3z =12  .
$${solve}\:{in}\:{Z}^{\mathrm{3}} \:\:\:\:{x}+\mathrm{2}{y}\:+\mathrm{3}{z}\:=\mathrm{12}\:\:. \\ $$
Commented by maxmathsup by imad last updated on 24/Aug/18
let consider the congruence modulo 3 ( Z/3Z)   (s) ⇒ x^−   +2^−  y^−  +3^− z^−  =12^−  ⇒x^−  −y^−  =0^−  ⇒ x^−  =y^−  ⇒x  =y+3k  k∈Z  (s) ⇒y +3k +2y +3z =12 ⇒3y +3k  +3z =12 ⇒y +z +k =4 ⇒  z =4−y −k    ⇒(x,y,z) =(y+3k ,y ,4−y −k) with k ∈ Z  .
$${let}\:{consider}\:{the}\:{congruence}\:{modulo}\:\mathrm{3}\:\left(\:{Z}/\mathrm{3}{Z}\right)\: \\ $$$$\left({s}\right)\:\Rightarrow\:\overset{−} {{x}}\:\:+\overset{−} {\mathrm{2}}\:\overset{−} {{y}}\:+\overset{−} {\mathrm{3}}\overset{−} {{z}}\:=\mathrm{1}\overset{−} {\mathrm{2}}\:\Rightarrow\overset{−} {{x}}\:−\overset{−} {{y}}\:=\overset{−} {\mathrm{0}}\:\Rightarrow\:\overset{−} {{x}}\:=\overset{−} {{y}}\:\Rightarrow{x}\:\:={y}+\mathrm{3}{k}\:\:{k}\in{Z} \\ $$$$\left({s}\right)\:\Rightarrow{y}\:+\mathrm{3}{k}\:+\mathrm{2}{y}\:+\mathrm{3}{z}\:=\mathrm{12}\:\Rightarrow\mathrm{3}{y}\:+\mathrm{3}{k}\:\:+\mathrm{3}{z}\:=\mathrm{12}\:\Rightarrow{y}\:+{z}\:+{k}\:=\mathrm{4}\:\Rightarrow \\ $$$${z}\:=\mathrm{4}−{y}\:−{k}\:\:\:\:\Rightarrow\left({x},{y},{z}\right)\:=\left({y}+\mathrm{3}{k}\:,{y}\:,\mathrm{4}−{y}\:−{k}\right)\:{with}\:{k}\:\in\:{Z}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *