Menu Close

solve-inside-1-1-the-d-e-1-x-2-y-y-e-2x-




Question Number 31972 by abdo imad last updated on 17/Mar/18
solve inside ]−1,1[ the d.e. (√(1−x^2 )) y^′  +y =e^(−2x)  .
solveinside]1,1[thed.e.1x2y+y=e2x.
Commented by math khazana by abdo last updated on 15/Aug/18
he ⇒(√(1−x^2 )) y^′  +y =0 ⇒  (√(1−x^2 ))y^′  =−y ⇒(y^′ /y) =−(1/( (√(1−x^2 )))) ⇒  ∫ (y^′ /y) dx = arccosx +α ⇒  ln∣y∣ = arccosx +α ⇒y =k e^(arccosx)   mvc method give y^′  =k^′  e^(arccosx)  −(k/( (√(1−x^2 ))))e^(arccosx)   (e) ⇒(√(1−x^2 )){k^′  e^(arccosx)  −(k/( (√(1−x^2 ))))}e^(arccosx)   +k e^(arccosx)  =e^(−2x)   ⇒  k^′ (√(1−x^2 ))e^(arccosx)   =e^(−2x)  ⇒  k^′  = (e^(−2x) /( (√(1−x^2 ))e^(arccosx) )) = (e^(−2x−arccosx) /( (√(1−x^2 )))) ⇒  k(x) = ∫    (e^(−2x −arccosx) /( (√(1−x^2 )))) dx+c ⇒  y(x)=e^(arcosx)   {  ∫_. ^x    (e^(−2t −arccost) /( (√(1−t^2 )))) +c}
he1x2y+y=01x2y=yyy=11x2yydx=arccosx+αlny=arccosx+αy=kearccosxmvcmethodgivey=kearccosxk1x2earccosx(e)1x2{kearccosxk1x2}earccosx+kearccosx=e2xk1x2earccosx=e2xk=e2x1x2earccosx=e2xarccosx1x2k(x)=e2xarccosx1x2dx+cy(x)=earcosx{.xe2tarccost1t2+c}

Leave a Reply

Your email address will not be published. Required fields are marked *