Menu Close

solve-inside-C-x-1-x-3-x-1-x-2-x-1-x-1-0-




Question Number 96211 by mathmax by abdo last updated on 30/May/20
solve inside C  (x−(1/x))^3  +(x−(1/x))^2  +(x−(1/x))+1 =0
solveinsideC(x1x)3+(x1x)2+(x1x)+1=0
Answered by mr W last updated on 30/May/20
let t=x−(1/x)  t^3 +t^2 +t+1=0  (t−1)(t^3 +t^2 +t+1)=0  ⇒t^4 −1=0  ⇒t^4 =1  ⇒t_k =cos ((2kπ)/4)+i sin ((2kπ)/4) with k=1,2,3  (k=0 is not root of original eqn.)  x−(1/x)=t  x^2 −tx−1=0  ⇒x=(t/2)±(√(((t/2))^2 +1))  ......
lett=x1xt3+t2+t+1=0(t1)(t3+t2+t+1)=0t41=0t4=1tk=cos2kπ4+isin2kπ4withk=1,2,3(k=0isnotrootoforiginaleqn.)x1x=tx2tx1=0x=t2±(t2)2+1
Answered by mathmax by abdo last updated on 30/May/20
let x−(1/x) =z  (e)⇒z^3  +z^2  +z +1 =0 ⇒((1−z^4 )/(1−z)) =0    (z≠1) ⇒  z^4  =1  and z ≠1  let z =r e^(iθ)  ⇒r^4  =1 and 4θ =2kπ ⇒r=1 and θ =((kπ)/2)  so the roots  are z_k =e^(i((kπ)/2))  and k ∈{1,2,3}  z_1 =e^((iπ)/2)  =i  ,z_2 =−1  ,z_3 =e^(i((3π)/2))  =e^(i(2π−(π/2)))  =−i  x−(1/x) =i ⇒x^2 −1 =ix ⇒x^2 −ix−1=0  Δ =−1+4 =3 ⇒x_1 =((i+(√3))/2)  x_2 =((i−(√3))/2)  x−(1/x) =−1 ⇒x^2 −1 =−x ⇒x^2 +x−1 =0  Δ =5 ⇒x_3 =((−1+(√5))/2) and x_4 =((−1−(√5))/2)  x−(1/x) =−i ⇒x^2 −1 =−ix ⇒x^2 +ix−1 =0  Δ =−1+4 =3 ⇒x_5 =((−i+(√3))/2) and x_6 =((−i−(√3))/2)  the roots of this equation are the complex  (x_i )_(1≤i≤6)
letx1x=z(e)z3+z2+z+1=01z41z=0(z1)z4=1andz1letz=reiθr4=1and4θ=2kπr=1andθ=kπ2sotherootsarezk=eikπ2andk{1,2,3}z1=eiπ2=i,z2=1,z3=ei3π2=ei(2ππ2)=ix1x=ix21=ixx2ix1=0Δ=1+4=3x1=i+32x2=i32x1x=1x21=xx2+x1=0Δ=5x3=1+52andx4=152x1x=ix21=ixx2+ix1=0Δ=1+4=3x5=i+32andx6=i32therootsofthisequationarethecomplex(xi)1i6
Answered by MJS last updated on 30/May/20
(x−(1/x))^3 +(x−(1/x))^2 +(x−(1/x))+1=0  ⇒  x^6 +x^5 −2x^4 −x^3 +2x^2 +x−1=0  (x^4 −x^2 +1)(x^2 +x−1)=0  and this is very easy to solve
(x1x)3+(x1x)2+(x1x)+1=0x6+x52x4x3+2x2+x1=0(x4x2+1)(x2+x1)=0andthisisveryeasytosolve
Commented by mr W last updated on 30/May/20
good idea!
goodidea!

Leave a Reply

Your email address will not be published. Required fields are marked *