Question Number 61652 by maxmathsup by imad last updated on 05/Jun/19
$${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{4}} \:=\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}} \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
$${we}\:{have}\:\mid\mathrm{1}−{i}\mid=\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{1}−{i}\:=\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$$\mid\mathrm{1}+{i}\sqrt{\mathrm{3}}\mid\:=\mathrm{2}\:\Rightarrow\mathrm{1}+{i}\sqrt{\mathrm{3}}=\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right\}\:=\mathrm{2}\:{e}^{\frac{{i}\pi}{\mathrm{3}}} \:\Rightarrow\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{3}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{3}}\right)} \:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−\frac{{i}\mathrm{7}\pi}{\mathrm{12}}} \:\:\:{let}\:{z}\:={r}\:{e}^{{i}\theta} \\ $$$$\left({e}\right)\:\Rightarrow\:{r}^{\mathrm{4}} \:{e}^{{i}\mathrm{4}\theta} \:=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{i}\left(\frac{\mathrm{7}\pi}{\mathrm{12}}\right)} \:\Rightarrow{r}\:=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{8}}} \:\:\:{and}\:\mathrm{4}\theta\:\:\:=−\frac{\mathrm{7}\pi}{\mathrm{12}}\:+\mathrm{2}{k}\pi\:\Rightarrow \\ $$$$\theta_{{k}} =−\frac{\mathrm{7}\pi}{\mathrm{48}}\:+\frac{{k}\pi}{\mathrm{2}}\:\:\:\:\:{and}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{3}\:\:{so}\:{the}\:{solutions}\:{are}\: \\ $$$${Z}_{{k}} =\:\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{8}}} \:{e}^{{i}\left(\frac{{k}\pi}{\mathrm{2}}−\frac{\mathrm{7}\pi}{\mathrm{48}}\right)} \:\:\:\:\:{with}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{3}\:. \\ $$
Answered by MJS last updated on 06/Jun/19
$$\frac{\mathrm{1}−\mathrm{i}}{\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}}=\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{4}}−\mathrm{i}\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\mathrm{7}\pi}{\mathrm{12}}} \\ $$$${z}^{\mathrm{4}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\mathrm{7}\pi}{\mathrm{12}}} \\ $$$${z}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{8}}]{\mathrm{2}}}\:\mathrm{e}^{\mathrm{i}\pi×\left\{−\frac{\mathrm{31}}{\mathrm{48}},\:−\frac{\mathrm{7}}{\mathrm{48}},\:\frac{\mathrm{17}}{\mathrm{48}},\:\frac{\mathrm{41}}{\mathrm{48}}\right\}} \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
$${thanks}\:{sirmjs} \\ $$