Menu Close

solve-inside-C-z-4-1-i-1-i-3-




Question Number 61652 by maxmathsup by imad last updated on 05/Jun/19
solve inside C  z^4  =((1−i)/(1+i(√3)))
solveinsideCz4=1i1+i3
Commented by maxmathsup by imad last updated on 06/Jun/19
we have ∣1−i∣=(√2) ⇒1−i =(√2)e^(−((iπ)/4))   ∣1+i(√3)∣ =2 ⇒1+i(√3)=2{(1/2) +((i(√3))/2)} =2 e^((iπ)/3)  ⇒((1−i)/(1+i(√3))) =((√2)/2) e^(−((iπ)/4))  e^(−((iπ)/3))   =((√2)/2) e^(−i((π/4)+(π/3)))  =((√2)/2) e^(−((i7π)/(12)))    let z =r e^(iθ)   (e) ⇒ r^4  e^(i4θ)  =2^(−(1/2))  e^(−i(((7π)/(12))))  ⇒r =2^(−(1/8))    and 4θ   =−((7π)/(12)) +2kπ ⇒  θ_k =−((7π)/(48)) +((kπ)/2)     and 0≤k≤3  so the solutions are   Z_k = 2^(−(1/8))  e^(i(((kπ)/2)−((7π)/(48))))      with 0≤k≤3 .
wehave1i∣=21i=2eiπ41+i3=21+i3=2{12+i32}=2eiπ31i1+i3=22eiπ4eiπ3=22ei(π4+π3)=22ei7π12letz=reiθ(e)r4ei4θ=212ei(7π12)r=218and4θ=7π12+2kπθk=7π48+kπ2and0k3sothesolutionsareZk=218ei(kπ27π48)with0k3.
Answered by MJS last updated on 06/Jun/19
((1−i)/(1+i(√3)))=((1−(√3))/4)−i((1+(√3))/4)=((√2)/2)e^(−i((7π)/(12)))   z^4 =((√2)/2)e^(−i((7π)/(12)))   z=(1/( (2)^(1/8) )) e^(iπ×{−((31)/(48)), −(7/(48)), ((17)/(48)), ((41)/(48))})
1i1+i3=134i1+34=22ei7π12z4=22ei7π12z=128eiπ×{3148,748,1748,4148}
Commented by maxmathsup by imad last updated on 06/Jun/19
thanks sirmjs
thankssirmjs

Leave a Reply

Your email address will not be published. Required fields are marked *