Menu Close

solve-integration-1-2-x-d-x-2-




Question Number 85020 by M±th+et£s last updated on 18/Mar/20
solve integration  ∫_1 ^2 x d⌊x^2 ⌋
solveintegration12xdx2
Commented by mr W last updated on 18/Mar/20
1≤x<(√2): ⌊x^2 ⌋=1, d(⌊x^2 ⌋)=0 dx  (√2)≤x<(√3): ⌊x^2 ⌋=2, d(⌊x^2 ⌋)=0 dx  (√3)≤x<2: ⌊x^2 ⌋=3, d(⌊x^2 ⌋)=0 dx  ∫_1 ^2 x d⌊x^2 ⌋=∫_1 ^(√2) x d⌊x^2 ⌋+∫_(√2) ^(√3) x d⌊x^2 ⌋+∫_(√3) ^2 x d⌊x^2 ⌋  =∫_1 ^(√2) x×0 dx+∫_(√2) ^(√3) x×0 dx+∫_(√3) ^2 x×0 dx  =0
1x<2:x2=1,d(x2)=0dx2x<3:x2=2,d(x2)=0dx3x<2:x2=3,d(x2)=0dx12xdx2=12xdx2+23xdx2+32xdx2=12x×0dx+23x×0dx+32x×0dx=0
Commented by M±th+et£s last updated on 18/Mar/20
i think the solution is 2+(√3) +(√2)  u=x →→ du=dx  v=d⌊x^2 ⌋→→ v=⌊x^2 ⌋  I=[⌊x^2 ⌋]_1 ^2  −∫_1 ^2 ⌊x^2 ⌋ dx  (8−1)−[(∫_1 ^(√2) ⌊x^2 ⌋dx +∫_(√2) ^(√3) ⌊x^2 ⌋dx+∫_(√3) ^2 ⌊x^2 ⌋dx)]  7−[[1]_1 ^(√2) +[2]_(√2) ^(√3) +[3]_(√3) ^(√2) ]  7−[(√2) −1+2((√3) −(√2))+3(2−(√3))]  7−[−(√2) −(√3) +5]  2+(√3)+(√2)
ithinkthesolutionis2+3+2u=x→→du=dxv=dx2→→v=x2I=[x2]1212x2dx(81)[(12x2dx+23x2dx+32x2dx)]7[[1]12+[2]23+[3]32]7[21+2(32)+3(23)]7[23+5]2+3+2
Commented by mr W last updated on 18/Mar/20
if f(x)=⌊x^2 ⌋, say 1≤x<(√2),  what is ((df(x))/dx)=?
iff(x)=x2,say1x<2,whatisdf(x)dx=?
Commented by M±th+et£s last updated on 18/Mar/20
i dont think i can derivative this   but becuse dv=d⌊x^2 ⌋ so v=⌊x^2 ⌋
idontthinkicanderivativethisbutbecusedv=dx2sov=x2

Leave a Reply

Your email address will not be published. Required fields are marked *