Menu Close

solve-integration-1-x-x-




Question Number 28702 by students last updated on 29/Jan/18
solve integration  (1/( (√((x−α)(β−x)))))  .
$${solve}\:{integration}\:\:\frac{\mathrm{1}}{\:\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)}}\:\:. \\ $$
Commented by abdo imad last updated on 29/Jan/18
let use the ch. x= ((α−β)/2)t +((α+β)/2)so  x−α= ((α−β)/2)t +((α+β −2α)/2)=((α−β)/2) (t−1) and   β−x=β−((α+β)/2) −((α−β)/2)t =((β−α)/2) −((α−β)/2)t  = ((α−β)/2)(−1−t) so   I=∫  ? (dx/( (√((x−α)(β−x)))))= ∫      (1/( (√(((α−β)/2)(t−1)((α−β)/2)(−1−1−t)))))((α−β)/2)dt  =(((α−β)/2)/(∣((α−β)/2)∣)) ∫           (dt/( (√(1−t^2 ))))= ξ arcsin(t)+k  = ξ arcsin ( (2/(α−β))(x− ((α+β)/2)))  if α≠β and ξ^2 =1  and we mudt study the case α=β....
$${let}\:{use}\:{the}\:{ch}.\:{x}=\:\frac{\alpha−\beta}{\mathrm{2}}{t}\:+\frac{\alpha+\beta}{\mathrm{2}}{so} \\ $$$${x}−\alpha=\:\frac{\alpha−\beta}{\mathrm{2}}{t}\:+\frac{\alpha+\beta\:−\mathrm{2}\alpha}{\mathrm{2}}=\frac{\alpha−\beta}{\mathrm{2}}\:\left({t}−\mathrm{1}\right)\:{and}\: \\ $$$$\beta−{x}=\beta−\frac{\alpha+\beta}{\mathrm{2}}\:−\frac{\alpha−\beta}{\mathrm{2}}{t}\:=\frac{\beta−\alpha}{\mathrm{2}}\:−\frac{\alpha−\beta}{\mathrm{2}}{t} \\ $$$$=\:\frac{\alpha−\beta}{\mathrm{2}}\left(−\mathrm{1}−{t}\right)\:{so}\: \\ $$$${I}=\int\:\:?\:\frac{{dx}}{\:\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)}}=\:\int\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\frac{\alpha−\beta}{\mathrm{2}}\left({t}−\mathrm{1}\right)\frac{\alpha−\beta}{\mathrm{2}}\left(−\mathrm{1}−\mathrm{1}−{t}\right)}}\frac{\alpha−\beta}{\mathrm{2}}{dt} \\ $$$$=\frac{\frac{\alpha−\beta}{\mathrm{2}}}{\mid\frac{\alpha−\beta}{\mathrm{2}}\mid}\:\int\:\:\:\:\:\:\:\:\:\:\:\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\:\xi\:{arcsin}\left({t}\right)+{k} \\ $$$$=\:\xi\:{arcsin}\:\left(\:\frac{\mathrm{2}}{\alpha−\beta}\left({x}−\:\frac{\alpha+\beta}{\mathrm{2}}\right)\right)\:\:{if}\:\alpha\neq\beta\:{and}\:\xi^{\mathrm{2}} =\mathrm{1} \\ $$$${and}\:{we}\:{mudt}\:{study}\:{the}\:{case}\:\alpha=\beta…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *