Menu Close

Solve-it-in-N-C-n-3-C-n-2-5-n-3-6n-2-6-




Question Number 87732 by mathocean1 last updated on 05/Apr/20
Solve it in N  C_n ^3 −C_n ^2 =5+((n^3 −6n^2 )/6)
$$\mathrm{Solve}\:\mathrm{it}\:\mathrm{in}\:\mathbb{N} \\ $$$$\mathrm{C}_{\mathrm{n}} ^{\mathrm{3}} −\mathrm{C}_{\mathrm{n}} ^{\mathrm{2}} =\mathrm{5}+\frac{\mathrm{n}^{\mathrm{3}} −\mathrm{6n}^{\mathrm{2}} }{\mathrm{6}} \\ $$
Commented by Tony Lin last updated on 06/Apr/20
((n(n−1)(n−2))/6)−((n(n−1))/2)=((30+n^3 −6n^2 )/6)  n(n−1)(n−2)−3n(n−1)=30+n^3 −6n^2   (n^3 −3n^2 +2n)−3n^2 +3n=30+n^3 −6n^2   5n=30⇒n=6
$$\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{6}}−\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}=\frac{\mathrm{30}+{n}^{\mathrm{3}} −\mathrm{6}{n}^{\mathrm{2}} }{\mathrm{6}} \\ $$$${n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)−\mathrm{3}{n}\left({n}−\mathrm{1}\right)=\mathrm{30}+{n}^{\mathrm{3}} −\mathrm{6}{n}^{\mathrm{2}} \\ $$$$\left({n}^{\mathrm{3}} −\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n}\right)−\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}=\mathrm{30}+{n}^{\mathrm{3}} −\mathrm{6}{n}^{\mathrm{2}} \\ $$$$\mathrm{5}{n}=\mathrm{30}\Rightarrow{n}=\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *