Menu Close

solve-lim-x-0-2-x-n-2-n-x-




Question Number 65472 by Masumsiddiqui399@gmail.com last updated on 30/Jul/19
       solve       lim_(x→0)  (([(2+x)^n −2^n ])/x)
$$ \\ $$$$ \\ $$$$\:\:\:{solve}\:\: \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left[\left(\mathrm{2}+{x}\right)^{{n}} −\mathrm{2}^{{n}} \right]}{{x}} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 30/Jul/19
let A(x)=(((2+x)^n −2^n )/x) ⇒A(x) =((Σ_(k=0) ^n  C_n ^k 2^(n−k) x^k −2^n )/x)  =((Σ_(k=1) ^n  C_n ^k  x^k 2^(n−k) )/x) =Σ_(k=1) ^n  C_n ^k  2^(n−k)  x^(k−1)   = C_n ^1  2^(n−1)   +C_n ^2  2^(n−2)  x +C_n ^3  2^(n−3)  x^2  +....+C_n ^n  x^(n−1)  ⇒  lim_(x→0) A(x) =n 2^(n−1)  .
$${let}\:{A}\left({x}\right)=\frac{\left(\mathrm{2}+{x}\right)^{{n}} −\mathrm{2}^{{n}} }{{x}}\:\Rightarrow{A}\left({x}\right)\:=\frac{\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \mathrm{2}^{{n}−{k}} {x}^{{k}} −\mathrm{2}^{{n}} }{{x}} \\ $$$$=\frac{\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \mathrm{2}^{{n}−{k}} }{{x}}\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\mathrm{2}^{{n}−{k}} \:{x}^{{k}−\mathrm{1}} \\ $$$$=\:{C}_{{n}} ^{\mathrm{1}} \:\mathrm{2}^{{n}−\mathrm{1}} \:\:+{C}_{{n}} ^{\mathrm{2}} \:\mathrm{2}^{{n}−\mathrm{2}} \:{x}\:+{C}_{{n}} ^{\mathrm{3}} \:\mathrm{2}^{{n}−\mathrm{3}} \:{x}^{\mathrm{2}} \:+….+{C}_{{n}} ^{{n}} \:{x}^{{n}−\mathrm{1}} \:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} {A}\left({x}\right)\:={n}\:\mathrm{2}^{{n}−\mathrm{1}} \:. \\ $$
Answered by som(math1967) last updated on 30/Jul/19
lim_(x→0) ((∣2^n +c_(1  ) ^n x2^(n−1) +.......x^n −2^n ∣)/x)    ^n c_1 2^(n−1)
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mid\mathrm{2}^{{n}} +\underset{\mathrm{1}\:\:} {\overset{{n}} {{c}}x}\mathrm{2}^{{n}−\mathrm{1}} +…….{x}^{{n}} −\mathrm{2}^{{n}} \mid}{{x}} \\ $$$$\:\overset{{n}} {\:}{c}_{\mathrm{1}} \mathrm{2}^{{n}−\mathrm{1}} \\ $$
Answered by mr W last updated on 30/Jul/19
=lim_(x→0) ((n(2+x)^(n−1) )/1)  =n2^(n−1)
$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{n}\left(\mathrm{2}+{x}\right)^{{n}−\mathrm{1}} }{\mathrm{1}} \\ $$$$={n}\mathrm{2}^{{n}−\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *