Menu Close

solve-lim-x-0-x-2-tan-sinpix-2x-solution-let-L-lim-x-0-x-2-tan-sinpix-2x-since-sinx-x-x-3-6-L-lim-x-0-x-2-tan-pix-2x-pi-3-x-3-12x-L-lim-x-0-x-2-tan-pi-2-pi-3-x-2




Question Number 192573 by senestro last updated on 21/May/23
solve;  lim_(x→0) x^2 tan(((sinπx)/(2x)))  solution  let L=lim_(x→0) x^2 tan(((sinπx)/(2x)))  since sinx∼x−(x^3 /6)   L=lim_(x→0) x^2 tan(((πx)/(2x))−((π^3 x^3 )/(12x)))  L=lim_(x→0) x^2 tan((π/2)−((π^3 x^2 )/(12)))  since tan((π/2)−x)=(1/(tanx))  L=lim_(x→0) (x^2 /(tan(((π^3 x^2 )/(12)))))  L=lim_(x→0) (((π^3 x^2 )/(12))/(tan(((π^3 x^2 )/(12))))) ((12)/π^3 )  L=((12)/π^3 )lim_(x→0) (((π^3 x^2 )/(12))/(tan(((π^3 x^2 )/(12)))))  since lim_(x→0) (x/(tanx))=1  L=((12)/π^3 ) ∙1=((12)/π^3 )  solved by HY a.k.a senestro
solve;limx0x2tan(sinπx2x)solutionletL=limx0x2tan(sinπx2x)sincesinxxx36L=limx0x2tan(πx2xπ3x312x)L=limx0x2tan(π2π3x212)sincetan(π2x)=1tanxL=limx0x2tan(π3x212)L=limx0π3x212tan(π3x212)12π3L=12π3limx0π3x212tan(π3x212)sincelimx0xtanx=1L=12π31=12π3solvedbyHYa.k.asenestro

Leave a Reply

Your email address will not be published. Required fields are marked *