Menu Close

solve-log-1-3-5x-1-gt-0-




Question Number 172081 by Mikenice last updated on 23/Jun/22
solve  log_(1/3) (5x−1)>_− 0
$${solve} \\ $$$${log}_{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{5}{x}−\mathrm{1}\right)\underset{−} {>}\mathrm{0} \\ $$
Commented by mr W last updated on 23/Jun/22
5x−1≥1  ⇒x≥(2/5)
$$\mathrm{5}{x}−\mathrm{1}\geqslant\mathrm{1} \\ $$$$\Rightarrow{x}\geqslant\frac{\mathrm{2}}{\mathrm{5}} \\ $$
Commented by mr W last updated on 23/Jun/22
yes, you are right, thanks!  log_(1/3) (5x−1)=−log_3  (5x−1)>_− 0  ⇒log_3  (5x−1)≤0  ⇒5x−1≤1  ⇒x≤(2/5) ✓
$${yes},\:{you}\:{are}\:{right},\:{thanks}! \\ $$$${log}_{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{5}{x}−\mathrm{1}\right)=−\mathrm{log}_{\mathrm{3}} \:\left(\mathrm{5}{x}−\mathrm{1}\right)\underset{−} {>}\mathrm{0} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{3}} \:\left(\mathrm{5}{x}−\mathrm{1}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{x}−\mathrm{1}\leqslant\mathrm{1} \\ $$$$\Rightarrow{x}\leqslant\frac{\mathrm{2}}{\mathrm{5}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *