Menu Close

solve-log-2-9-2-x-log-2-2-3-x-log-2-2-




Question Number 172028 by Mikenice last updated on 23/Jun/22
solve:  ((log_2 (9−2^(x)) )/(log_2 2^((3−x)) ))=log_2 2
$${solve}: \\ $$$$\frac{{log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{\left.{x}\right)} \right.}{{log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} }={log}_{\mathrm{2}} \mathrm{2} \\ $$
Answered by Rasheed.Sindhi last updated on 23/Jun/22
((log_2 (9−2^(x)) )/(log_2 2^((3−x)) ))=log_2 2  ((log_2 (9−2^(x)) )/(log_2 2^((3−x)) ))=1  log_2 (9−2^x )=log_2 2^((3−x))   9−2^x =2^(3−x)   2^x +2^(3−x) =9  9 is sum of powers of 2  9=8+1  9=2^3 +2^0   2^x +2^(3−x) =2^3 +2^0   2^x +2^(3−x) =2^3 +2^(3−3)   x=3
$$\frac{{log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{\left.{x}\right)} \right.}{{log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} }={log}_{\mathrm{2}} \mathrm{2} \\ $$$$\frac{{log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{\left.{x}\right)} \right.}{{log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} }=\mathrm{1} \\ $$$${log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{{x}} \right)={log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} \\ $$$$\mathrm{9}−\mathrm{2}^{{x}} =\mathrm{2}^{\mathrm{3}−{x}} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{\mathrm{3}−{x}} =\mathrm{9} \\ $$$$\mathrm{9}\:{is}\:{sum}\:{of}\:{powers}\:{of}\:\mathrm{2} \\ $$$$\mathrm{9}=\mathrm{8}+\mathrm{1} \\ $$$$\mathrm{9}=\mathrm{2}^{\mathrm{3}} +\mathrm{2}^{\mathrm{0}} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{\mathrm{3}−{x}} =\mathrm{2}^{\mathrm{3}} +\mathrm{2}^{\mathrm{0}} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{\mathrm{3}−{x}} =\mathrm{2}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}−\mathrm{3}} \\ $$$${x}=\mathrm{3} \\ $$
Commented by Mikenice last updated on 23/Jun/22
yhanks sir
$${yhanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *