Menu Close

solve-log-24sinx-24cosx-3-2-




Question Number 83289 by Cmr 237 last updated on 29/Feb/20
  solve  log_((24sinx)) (24cosx)=(3/2)
solvelog(24sinx)(24cosx)=32
Answered by TANMAY PANACEA last updated on 29/Feb/20
((ln24cosx)/(ln24sinx))=(3/2)  ((ln24cosx)/3)=((ln24sinx)/2)=k  24cosx=e^(3k)   24sinx=e^(2k)   24^2 (cos^2 x+sin^2 x)=e^(6k) +e^(4k)   (e^(2k) )^3 +(e^(2k) )^2 =576=8^3 +8^2   e^(2k) =8→2k=ln8  k=((3ln2)/2)=(3/2)ln2  now 24sinx=e^(2k) =8  sinx=(1/3)     x=sin^(−1) ((1/3))      ★recheck...e^(2k) =8   e^k =(√8)   e^(3k) =8(√8)  so  24cosx=8(√8)   cosx=((√8)/3)★
ln24cosxln24sinx=32ln24cosx3=ln24sinx2=k24cosx=e3k24sinx=e2k242(cos2x+sin2x)=e6k+e4k(e2k)3+(e2k)2=576=83+82e2k=82k=ln8k=3ln22=32ln2now24sinx=e2k=8sinx=13x=sin1(13)rechecke2k=8ek=8e3k=88so24cosx=88cosx=83
Answered by mr W last updated on 29/Feb/20
((ln (24 cos x))/(ln (24 sin x)))=(3/2)  (24 cos x)^2 =(24 sin x)^3   cos^2  x=24 sin^3  x  24 sin^3  x+sin^2  x−1=0  24s^3 +s^2 −1=0  (3s−1)(8s^2 +3s+1)=0  ⇒s=sin x=(1/3) ⇒x=nπ+(−1)^n sin^(−1) (1/3)  ⇒s=sin x=((−3±i(√(23)))/(16)) ⇒non−real
ln(24cosx)ln(24sinx)=32(24cosx)2=(24sinx)3cos2x=24sin3x24sin3x+sin2x1=024s3+s21=0(3s1)(8s2+3s+1)=0s=sinx=13x=nπ+(1)nsin113s=sinx=3±i2316nonreal
Commented by Cmr 237 last updated on 29/Feb/20
thk you sir
thkyousir
Commented by jacoque@gmail.com last updated on 29/Feb/20
good very good
goodverygood
Answered by jacoque@gmail.com last updated on 29/Feb/20
(24sin x)^(3/2) =24cos x  (((sin x)^(3/2) )/(cos x))=((24)/(24^(3/2) ))  (((sin x)^(3/2) )/(cos x))=((√6)/(12))  (((1−cos^2 x)^((1/2)×(3/2)) )/(cos x))=((√6)/(12))  ((((1−cos^2 x)^((1/2)×(3/2)) )^4 )/(cos^4 x))=((((√6))^4 )/(12^4 ))  (((1−cos^2 x)^3 )/(cos^4 x))=(1/(576))  (((1−2cos^2 x+cos^4 x)(1−cos^2 x))/(cos^4 x))=(1/(576))  ((1−cos^2 x−2cos^2 x+2cos^4 x+cos^4 x−cos^6 x)/(cos^4 x))=(1/(576))  (1/(576))  576−1728cos^2 x+1728cos^4 x−576cos^6 x−  −cos^4 x=0  576cos^6 x−1727cos^4 x+1728cos^2 x−576=0  cos x=0.942809041582     x=0.339836  cos x=−0.942809041582    no more real solutions
(24sinx)32=24cosx(sinx)32cosx=242432(sinx)32cosx=612(1cos2x)12×32cosx=612((1cos2x)12×32)4cos4x=(6)4124(1cos2x)3cos4x=1576(12cos2x+cos4x)(1cos2x)cos4x=15761cos2x2cos2x+2cos4x+cos4xcos6xcos4x=157615765761728cos2x+1728cos4x576cos6xcos4x=0576cos6x1727cos4x+1728cos2x576=0cosx=0.942809041582x=0.339836cosx=0.942809041582nomorerealsolutions

Leave a Reply

Your email address will not be published. Required fields are marked *